Skip to main content

InvalidArgumentError: Expected multiples argument to be a vector of length 1 but got length 2 (LSTM)

I am trying to develop a LSTM model which can predict a target variable from predictors. Here is my LSTM code:

import pandas as pd
from pandas import DataFrame
from pandas import concat
from pandas import read_csv
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
import tensorflow as tf
import keras
import keras.backend as K
from keras.models import Sequential
from keras.layers import Dense, SimpleRNN, Dropout, LSTM
from keras.layers import Activation
from keras.utils import plot_model, np_utils
from keras.regularizers import L1L2
from hyperas import optim
#from hyperas.distributions import choice, uniform, conditional
from hyperas.distributions import choice, uniform
from hyperopt import Trials, STATUS_OK, tpe
from math import sqrt
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
import random as rn
import os
matplotlib.rcParams.update({'font.size': 8})

#functions
def series_to_supervised(data, n_in=1,  
                         n_out=1,
                         dropnan=True):
    n_vars = 1 if type(data) is list else data.shape[1]
    df = DataFrame(data)
    cols, names = list(), list()
    # input sequence (t-n, ... t-1)
    for i in range(n_in, 0, -1):
        cols.append(df.shift(i))
        names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)]
    # forecast sequence (t, t+1, ... t+n)
    for i in range(0, n_out):
        cols.append(df.shift(-i))
        if i == 0:
            names += [('var%d(t)' % (j+1)) for j in range(n_vars)]
        else:
            names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)]
    # put it all together
    agg = concat(cols, axis=1)
    agg.columns = names
    # drop rows with NaN values
    if dropnan:
        agg.dropna(inplace=True)
    return agg

def rmse(y_true, y_pred):
    return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1))

def mse(y_true, y_pred):
    return K.mean(K.square(y_pred - y_true), axis=-1)

def mae(y_true, y_pred):
    return K.mean(K.abs(y_pred - y_true), axis=-1)

def data():
    def series_to_supervised(data, n_in=1, 
                             n_out=1, 
                             dropnan=True):
        n_vars = 1 if type(data) is list else data.shape[1]
        df = DataFrame(data)
        cols, names = list(), list()
        for i in range(n_in, 0, -1):
            cols.append(df.shift(i))
            names += [('var%d(t-%d)' % (j + 1, i)) for j in range(n_vars)]
        for i in range(0, n_out):
            cols.append(df.shift(-i))
            if i == 0:
                names += [('var%d(t)' % (j + 1)) for j in range(n_vars)]
            else:
                names += [('var%d(t+%d)' % (j + 1, i)) for j in range(n_vars)]
        agg = concat(cols, axis=1)
        agg.columns = names
        if dropnan:
            agg.dropna(inplace=True)
        return agg

    n_lags = 12
    n_train = 360
    n_test = 60
    
    dataset_raw = read_csv("D:/Binata/bin_ann_lstm_trial/data_Q/NCEP_1984_2018_1.csv",
                           index_col=None, parse_dates=True, infer_datetime_format=True)
    
    train_dates = dataset_raw[['Datetime', 'Q', 'pr']].iloc[:n_train]
    test_dates = dataset_raw[['Datetime', 'Q', 'pr']].iloc[n_train:]
    
    test_dates = test_dates.reset_index(drop=True)
    test_dates['Datetime'] = pd.to_datetime(test_dates['Datetime'])
    
    dataset = dataset_raw.drop(dataset_raw.columns[[0]], axis=1)
    values = dataset.values  # to make just values
    values = values.astype('float32')
    
    Q = values[:, 0]  # to make just values
    Q = Q.reshape(Q.shape[0], 1)
    pr = values[:, 2]  # to make just values
    pr = pr.reshape(pr.shape[0], 1)
    
    Q_scaler, pr_scaler= MinMaxScaler(), MinMaxScaler()  # scaling wrt to max min
    
    Q_scaled = Q_scaler.fit_transform(Q)  # scaling
    pr_scaled = pr_scaler.fit_transform(pr)  # scaling
  
 
    Q_super1 = series_to_supervised(Q_scaled, n_lags) #need to delete first two columns and first two rows
    Q_super_values = Q_super1.values  # to make just values
    print(Q_super_values)
    
    pr_super = series_to_supervised(pr_scaled, n_lags)
    pr_super_values = pr_super.values  # to make just values
    print(pr_super_values)
    
    result = pd.concat([pr_super, Q_super1], axis=1)
    
    result=result.reset_index(inplace=False)
    result1=result.drop(['index'], axis = 1)#delete first two columns
    result1.columns
    
    X=result1.iloc[:,0:n_lags+1]
    Y=result1.iloc[:,n_lags+1:n_lags+2]
    
    train_X =X.iloc[:n_train, :]
    train_Y = Y.iloc[:n_train, :]
    
    test_X =X.iloc[n_train:, :]
    test_Y = Y.iloc[n_train:, :]
    
    print(np.shape(train_X), np.shape(train_Y),np.shape(test_X),np.shape(test_Y))
    
    train_X=train_X.values
    train_Y=train_Y.values
    test_X=test_X.values
    test_Y=test_Y.values
    
    # reshape 
    # 2D into 3D 
    train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1]))
    train_Y = train_Y.reshape((train_Y.shape[0], 1, train_Y.shape[1]))
    test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1]))
    test_Y = test_Y.reshape((test_Y.shape[0], 1, test_Y.shape[1]))
    print(np.shape(train_X), np.shape(train_Y), np.shape(test_X), np.shape(test_Y))
    return train_X, train_Y, test_X, test_Y, test_dates

def create_model(train_X, train_Y, test_X, test_Y):
    def rmse(y_true, y_pred):
        return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1))
    
    n_test = 60
    n_epochs = 1000
    n_batch = 360

    os.environ['PYTHONHASHSEED'] = '0'
    np.random.seed(42)
    rn.seed(12345)
    session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
    tf.set_random_seed(1234)
    sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
    K.set_session(sess)

    model = Sequential()
    model.add(LSTM(units=, activation=,
                   input_shape=(None, train_X.shape[2]), use_bias=True,
                   bias_regularizer=L1L2(l1=0.01, l2=0.01)))
    model.add(Dropout())
    model.add(Dense(activation='linear', units=1, use_bias=True))

    adam = keras.optimizers.Adam(lr=)
    sgd = keras.optimizers.SGD(lr=)
    rmsprop = keras.optimizers.RMSprop(lr=)
    
    choiceval = 
    if choiceval == 'adam':
        optim = adam
    elif choiceval == 'sgd':
        optim = sgd
    else:
        optim = rmsprop

    model.compile(loss=rmse, optimizer=optim)

    earlystop = keras.callbacks.EarlyStopping(monitor='loss', min_delta=0.00000001, patience=5, verbose=1, mode='auto')
    model.fit(train_X, train_Y, batch_size=n_batch, epochs=n_epochs, verbose=2, shuffle=False, callbacks=[earlystop])
    loss = model.evaluate(test_X, test_Y, batch_size=n_test, verbose=0)
    return {'loss': loss, 'status': STATUS_OK, 'model': model}

if __name__ == '__main__':
    n_lags = 12
     
    path = "D:/Binata/LSTM_23.5.2022/Code/"

    best_run, best_model = optim.minimize(model=create_model, data=data, algo=tpe.suggest, max_evals=100, trials=Trials())
    train_X, train_Y, test_X, test_Y, test_dates = data()
    print("Best performing model chosen hyper-parameters:")
    print(best_run)

It works fine without Optimization. After adding optimization, I am having an error as below. I am new in Coding. Can you help me please? Its urgent.

InvalidArgumentError: Expected multiples argument to be a vector of length 1 but got length 2 [[Node: training_7/SGD/gradients/loss_7/dense_9_loss/Mean_3_grad/Tile = Tile[T=DT_FLOAT, Tmultiples=DT_INT32, _class=["loc:@training_7/SGD/gradients/loss_7/dense_9_loss/Mean_3_grad/truediv"], _device="/job:localhost/replica:0/task:0/device:GPU:0"](training_7/SGD/gradients/loss_7/dense_9_loss/Mean_3_grad/Reshape, training_7/SGD/gradients/loss_7/dense_9_loss/Mean_3_grad/Shape)]] [[Node: loss_7/add/_75 = _Recvclient_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1654_loss_7/add", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]]



source https://stackoverflow.com/questions/72664212/invalidargumenterror-expected-multiples-argument-to-be-a-vector-of-length-1-but

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...