So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it?
cv = KFold(n_splits = 10)
all_loss = []
for i in range(9): # 1st for loop over polynomial orders
poly_order = i
X_train = make_polynomial(x, poly_order)
loss_at_order = [] # initiate a set to collect loss for CV
for train_index, test_index in cv.split(X_train):
print('TRAIN:', train_index, 'TEST:', test_index)
X_train_cv, X_test_cv = X_train[train_index], X_test[test_index]
t_train_cv, t_test_cv = t[train_index], t[test_index]
reg.fit(X_train_cv, t_train_cv)
loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold
all_loss.append(np.mean(loss_at_order)) # collect loss at order
plt.plot(np.log(all_loss), 'bo-') # plot log(loss) at order
plt.xlabel('Polynomial Order') # always label x&y-axis
plt.ylabel('Log Loss') # always label x&y-axis
ValueError Traceback (most recent call last)
Input In [51], in <cell line: 4>()
11 t_train_cv, t_test_cv = t[train_index], t[test_index]
12 reg.fit(X_train_cv, t_train_cv)
---> 13 loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold
14 all_loss.append(np.mean(loss_at_order)) # collect loss at order
15 plt.plot(np.log(all_loss), 'bo-') # plot log(loss) at order
File ~\anaconda3\lib\site-packages\sklearn\linear_model\_base.py:362, in LinearModel.predict(self, X)
348 def predict(self, X):
349 """
350 Predict using the linear model.
351
(...)
360 Returns predicted values.
361 """
--> 362 return self._decision_function(X)
File ~\anaconda3\lib\site-packages\sklearn\linear_model\_base.py:345, in LinearModel._decision_function(self, X)
342 def _decision_function(self, X):
343 check_is_fitted(self)
--> 345 X = self._validate_data(X, accept_sparse=["csr", "csc", "coo"], reset=False)
346 return safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_
File ~\anaconda3\lib\site-packages\sklearn\base.py:585, in BaseEstimator._validate_data(self, X, y, reset, validate_separately, **check_params)
582 out = X, y
584 if not no_val_X and check_params.get("ensure_2d", True):
--> 585 self._check_n_features(X, reset=reset)
587 return out
File ~\anaconda3\lib\site-packages\sklearn\base.py:400, in BaseEstimator._check_n_features(self, X, reset)
397 return
399 if n_features != self.n_features_in_:
--> 400 raise ValueError(
401 f"X has {n_features} features, but {self.__class__.__name__} "
402 f"is expecting {self.n_features_in_} features as input."
403 )
ValueError: X has 10 features, but LinearRegression is expecting 1 features as input.
source https://stackoverflow.com/questions/74145897/valueerror-x-has-10-features-but-linearregression-is-expecting-1-features-as-i
Comments
Post a Comment