Skip to main content

sentiment classification using doc2vec and LSTM Models

I am building a text classification model based on sentiment analysis, the data contains text and sentiment[Positive, Natural, Negative]
As first step, I clean the data and normalize it, then create doc2vec embedding:

# Convert the data to TaggedDocument format for Doc2Vec
documents = [TaggedDocument(words=text.split(), tags=[label]) for text, label in zip(data["text"], data["sentiment"])]
print(documents)
model = Doc2Vec(vector_size=10, window=2, min_count=1, workers=4, epochs=100)
model.build_vocab(documents)
model.train(documents, total_examples=model.corpus_count, epochs=model.epochs)

then split the data:

X_train = [model.infer_vector(text.split()) for text in data["text"]]
print(X_train)
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
label_encoder = LabelEncoder()
y_trainEmbedding = label_encoder.fit_transform(data['sentiment'])
onehot_encoder = OneHotEncoder(sparse=False)
y_trainEmbedding = onehot_encoder.fit_transform(y_trainEmbedding.reshape(-1, 1))

then build LSTM model:

import numpy as np
from keras.models import Sequential
from keras.layers import LSTM, Dense

num_classes = len(np.unique(data["sentiment"]))
model_lstm = Sequential()
model_lstm.add(LSTM(64, input_shape=(10, 1)))
model_lstm.add(Dense(32, activation="relu"))
model_lstm.add(Dense(num_classes, activation="softmax"))
model_lstm.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
X_train_lstm = np.array(X_train).reshape(-1, 10, 1)
y_train_lstm = np.array(y_trainEmbedding)
model_lstm.fit(X_train_lstm, y_train_lstm, epochs=100, batch_size=32)

the result is good and the accuracy is 0.99

but when I try to predict the label of new text such as below:

# Use the trained model to predict the sentiment of new texts
text = "هذا Ų§Ł„ŲØŁŠŲŖ Ų¬Ł…ŁŠŁ„ "
text=remove_punctuations(text)
text=remove_repeating_char(text)
text=remove_english_char(text)
text=remove_diacritics(text)
text=remove_noise_char(text)
text=tokenizer(text)
text=remove_stop_word(text)
text=stemming(text) 
new_embedding = model.infer_vector(text.split())
print(new_embedding)
new_embedding_lstm = np.array(new_embedding).reshape(-1, 10, 1)
print(new_embedding)

y_pred = model_lstm.predict(new_embedding_lstm)
print(y_pred)

predicted_label = label_encoder.inverse_transform(np.argmax(y_pred))
print(predicted_label)

this error occured:

 18 
---> 19 predicted_label = label_encoder.inverse_transform(np.argmax(y_pred))
     20 print(predicted_label)

1 frames
/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py in column_or_1d(y, dtype, warn)
   1200         return _asarray_with_order(xp.reshape(y, -1), order="C", xp=xp)
   1201 
-> 1202     raise ValueError(
   1203         "y should be a 1d array, got an array of shape {} instead.".format(shape)
   1204     )

ValueError: y should be a 1d array, got an array of shape () instead.

is my process correct? and Anyone can help me solve it?



source https://stackoverflow.com/questions/76401941/sentiment-classification-using-doc2vec-and-lstm-models

Comments

Popular posts from this blog

How to show number of registered users in Laravel based on usertype?

i'm trying to display data from the database in the admin dashboard i used this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count(); echo $users; ?> and i have successfully get the correct data from the database but what if i want to display a specific data for example in this user table there is "usertype" that specify if the user is normal user or admin i want to user the same code above but to display a specific usertype i tried this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count()->WHERE usertype =admin; echo $users; ?> but it didn't work, what am i doing wrong? source https://stackoverflow.com/questions/68199726/how-to-show-number-of-registered-users-in-laravel-based-on-usertype

Why is my reports service not connecting?

I am trying to pull some data from a Postgres database using Node.js and node-postures but I can't figure out why my service isn't connecting. my routes/index.js file: const express = require('express'); const router = express.Router(); const ordersCountController = require('../controllers/ordersCountController'); const ordersController = require('../controllers/ordersController'); const weeklyReportsController = require('../controllers/weeklyReportsController'); router.get('/orders_count', ordersCountController); router.get('/orders', ordersController); router.get('/weekly_reports', weeklyReportsController); module.exports = router; My controllers/weeklyReportsController.js file: const weeklyReportsService = require('../services/weeklyReportsService'); const weeklyReportsController = async (req, res) => { try { const data = await weeklyReportsService; res.json({data}) console...

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...