Skip to main content

sentiment classification using doc2vec and LSTM Models

I am building a text classification model based on sentiment analysis, the data contains text and sentiment[Positive, Natural, Negative]
As first step, I clean the data and normalize it, then create doc2vec embedding:

# Convert the data to TaggedDocument format for Doc2Vec
documents = [TaggedDocument(words=text.split(), tags=[label]) for text, label in zip(data["text"], data["sentiment"])]
print(documents)
model = Doc2Vec(vector_size=10, window=2, min_count=1, workers=4, epochs=100)
model.build_vocab(documents)
model.train(documents, total_examples=model.corpus_count, epochs=model.epochs)

then split the data:

X_train = [model.infer_vector(text.split()) for text in data["text"]]
print(X_train)
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
label_encoder = LabelEncoder()
y_trainEmbedding = label_encoder.fit_transform(data['sentiment'])
onehot_encoder = OneHotEncoder(sparse=False)
y_trainEmbedding = onehot_encoder.fit_transform(y_trainEmbedding.reshape(-1, 1))

then build LSTM model:

import numpy as np
from keras.models import Sequential
from keras.layers import LSTM, Dense

num_classes = len(np.unique(data["sentiment"]))
model_lstm = Sequential()
model_lstm.add(LSTM(64, input_shape=(10, 1)))
model_lstm.add(Dense(32, activation="relu"))
model_lstm.add(Dense(num_classes, activation="softmax"))
model_lstm.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
X_train_lstm = np.array(X_train).reshape(-1, 10, 1)
y_train_lstm = np.array(y_trainEmbedding)
model_lstm.fit(X_train_lstm, y_train_lstm, epochs=100, batch_size=32)

the result is good and the accuracy is 0.99

but when I try to predict the label of new text such as below:

# Use the trained model to predict the sentiment of new texts
text = "Ł‡Ų°Ų§ Ų§Ł„ŲØŁŠŲŖ Ų¬Ł…ŁŠŁ„ "
text=remove_punctuations(text)
text=remove_repeating_char(text)
text=remove_english_char(text)
text=remove_diacritics(text)
text=remove_noise_char(text)
text=tokenizer(text)
text=remove_stop_word(text)
text=stemming(text) 
new_embedding = model.infer_vector(text.split())
print(new_embedding)
new_embedding_lstm = np.array(new_embedding).reshape(-1, 10, 1)
print(new_embedding)

y_pred = model_lstm.predict(new_embedding_lstm)
print(y_pred)

predicted_label = label_encoder.inverse_transform(np.argmax(y_pred))
print(predicted_label)

this error occured:

 18 
---> 19 predicted_label = label_encoder.inverse_transform(np.argmax(y_pred))
     20 print(predicted_label)

1 frames
/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py in column_or_1d(y, dtype, warn)
   1200         return _asarray_with_order(xp.reshape(y, -1), order="C", xp=xp)
   1201 
-> 1202     raise ValueError(
   1203         "y should be a 1d array, got an array of shape {} instead.".format(shape)
   1204     )

ValueError: y should be a 1d array, got an array of shape () instead.

is my process correct? and Anyone can help me solve it?



source https://stackoverflow.com/questions/76401941/sentiment-classification-using-doc2vec-and-lstm-models

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...