Skip to main content

sentiment classification using doc2vec and LSTM Models

I am building a text classification model based on sentiment analysis, the data contains text and sentiment[Positive, Natural, Negative]
As first step, I clean the data and normalize it, then create doc2vec embedding:

# Convert the data to TaggedDocument format for Doc2Vec
documents = [TaggedDocument(words=text.split(), tags=[label]) for text, label in zip(data["text"], data["sentiment"])]
print(documents)
model = Doc2Vec(vector_size=10, window=2, min_count=1, workers=4, epochs=100)
model.build_vocab(documents)
model.train(documents, total_examples=model.corpus_count, epochs=model.epochs)

then split the data:

X_train = [model.infer_vector(text.split()) for text in data["text"]]
print(X_train)
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
label_encoder = LabelEncoder()
y_trainEmbedding = label_encoder.fit_transform(data['sentiment'])
onehot_encoder = OneHotEncoder(sparse=False)
y_trainEmbedding = onehot_encoder.fit_transform(y_trainEmbedding.reshape(-1, 1))

then build LSTM model:

import numpy as np
from keras.models import Sequential
from keras.layers import LSTM, Dense

num_classes = len(np.unique(data["sentiment"]))
model_lstm = Sequential()
model_lstm.add(LSTM(64, input_shape=(10, 1)))
model_lstm.add(Dense(32, activation="relu"))
model_lstm.add(Dense(num_classes, activation="softmax"))
model_lstm.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
X_train_lstm = np.array(X_train).reshape(-1, 10, 1)
y_train_lstm = np.array(y_trainEmbedding)
model_lstm.fit(X_train_lstm, y_train_lstm, epochs=100, batch_size=32)

the result is good and the accuracy is 0.99

but when I try to predict the label of new text such as below:

# Use the trained model to predict the sentiment of new texts
text = "هذا البيت جميل "
text=remove_punctuations(text)
text=remove_repeating_char(text)
text=remove_english_char(text)
text=remove_diacritics(text)
text=remove_noise_char(text)
text=tokenizer(text)
text=remove_stop_word(text)
text=stemming(text) 
new_embedding = model.infer_vector(text.split())
print(new_embedding)
new_embedding_lstm = np.array(new_embedding).reshape(-1, 10, 1)
print(new_embedding)

y_pred = model_lstm.predict(new_embedding_lstm)
print(y_pred)

predicted_label = label_encoder.inverse_transform(np.argmax(y_pred))
print(predicted_label)

this error occured:

 18 
---> 19 predicted_label = label_encoder.inverse_transform(np.argmax(y_pred))
     20 print(predicted_label)

1 frames
/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py in column_or_1d(y, dtype, warn)
   1200         return _asarray_with_order(xp.reshape(y, -1), order="C", xp=xp)
   1201 
-> 1202     raise ValueError(
   1203         "y should be a 1d array, got an array of shape {} instead.".format(shape)
   1204     )

ValueError: y should be a 1d array, got an array of shape () instead.

is my process correct? and Anyone can help me solve it?



source https://stackoverflow.com/questions/76401941/sentiment-classification-using-doc2vec-and-lstm-models

Comments

Popular posts from this blog

Confusion between commands.Bot and discord.Client | Which one should I use?

Whenever you look at YouTube tutorials or code from this website there is a real variation. Some developers use client = discord.Client(intents=intents) while the others use bot = commands.Bot(command_prefix="something", intents=intents) . Now I know slightly about the difference but I get errors from different places from my code when I use either of them and its confusing. Especially since there has a few changes over the years in discord.py it is hard to find the real difference. I tried sticking to discord.Client then I found that there are more features in commands.Bot . Then I found errors when using commands.Bot . An example of this is: When I try to use commands.Bot client = commands.Bot(command_prefix=">",intents=intents) async def load(): for filename in os.listdir("./Cogs"): if filename.endswith(".py"): client.load_extension(f"Cogs.{filename[:-3]}") The above doesnt giveany response from my Cogs ...

How to show number of registered users in Laravel based on usertype?

i'm trying to display data from the database in the admin dashboard i used this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count(); echo $users; ?> and i have successfully get the correct data from the database but what if i want to display a specific data for example in this user table there is "usertype" that specify if the user is normal user or admin i want to user the same code above but to display a specific usertype i tried this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count()->WHERE usertype =admin; echo $users; ?> but it didn't work, what am i doing wrong? source https://stackoverflow.com/questions/68199726/how-to-show-number-of-registered-users-in-laravel-based-on-usertype

Why is my reports service not connecting?

I am trying to pull some data from a Postgres database using Node.js and node-postures but I can't figure out why my service isn't connecting. my routes/index.js file: const express = require('express'); const router = express.Router(); const ordersCountController = require('../controllers/ordersCountController'); const ordersController = require('../controllers/ordersController'); const weeklyReportsController = require('../controllers/weeklyReportsController'); router.get('/orders_count', ordersCountController); router.get('/orders', ordersController); router.get('/weekly_reports', weeklyReportsController); module.exports = router; My controllers/weeklyReportsController.js file: const weeklyReportsService = require('../services/weeklyReportsService'); const weeklyReportsController = async (req, res) => { try { const data = await weeklyReportsService; res.json({data}) console...