Skip to main content

Pagination in Server Component Next js

I have a project that I'm doing. I'm trying to do pagination using the NextJS 13 server component without using use client. We need to make the code work. Now this code only adds a parameter to the page url, but does not add entries to the screen. In theory, it should first show 1 article, then when the button is clicked, 1 more article, then another, and so on. Nothing is happening right now.

//component fetch mdx files

import fs from 'fs';
import path from 'path';
import matter from 'gray-matter';

interface Blog {
  meta: any;
  slug: string;
}

export function getAllPosts() {
  // 1) Set blogs directory
  const blogDir = "blog";



  // 2) Find all files in the blog directory
  const files = fs.readdirSync(path.join(blogDir));

  // 3) For each blog found
  const blogs: Blog[] = files.map((filename: string) => {
    // 4) Read the content of that blog
    const fileContent = fs.readFileSync(path.join(blogDir, filename), 'utf-8');

    // 5) Extract the metadata from the blog's content
    const { data: frontMatter } = matter(fileContent);

    // 6) Return the metadata and page slug
    return {
      meta: frontMatter,
      slug: filename.replace('.mdx', '')
    };
  });

  return blogs;
}
//page blog

import Link from 'next/link'
import { HomeProps } from "@/types";

import { getAllPosts } from '@/lib/getAllData'
import ShowMore from '@/components/loadmore'


export default function Blog({searchParams } : HomeProps) {


    const blogs = getAllPosts()

    return (
        <main className="flex flex-col">
            <h1 className="text-3xl font-bold">
                Мой блог
            </h1>


            <section className='py-10'>

                <div className='py-2'>

                    {blogs.map((blog) => (
                        <Link href={'/blog/' + blog.slug} passHref key={blog.slug}>
                            <div className='py-2 flex justify-between align-middle gap-2'>
                                <div>
                                    <h3 className="text-lg font-bold">{blog.meta.title}</h3>
                                    <p className="text-gray-400">{blog.meta.description}</p>
                                </div>
                                <div className="my-auto text-gray-400">
                                    <p>{blog.meta.date}</p>
                                </div>
                            </div>
                        </Link>
                    ))}

                    <ShowMore
                        pageNumber={(searchParams.limit || 1) / 1}
                        isNext={(searchParams.limit || 1) > blogs.length}
                    />
                </div>
            </section>
        </main>
    )
}
//loadmore component

"use client";

import { useRouter } from "next/navigation";

import { ShowMoreProps } from "@/types";
import { updateSearchParams } from "@/utils";

const ShowMore = ({ pageNumber, isNext  }: ShowMoreProps) => {
  const router = useRouter();

  const handleNavigation = () => {
    // Calculate the new limit based on the page number and navigation type
    const newLimit = (pageNumber + 1) * 1;

    // Update the "limit" search parameter in the URL with the new value
    const newPathname = updateSearchParams("limit", `${newLimit}`);

    router.push(newPathname);
  };

  return (
    <div className="w-full flex-center gap-5 mt-10">
      {!isNext && (
        <button
          title="Show More"
          onClick={handleNavigation}
        >Кнопка</button>
       )}
    </div>
  );
};

export default ShowMore;


It seems to me that I need to pass the limit parameter to getAllPosts, but how do I do this? Or am I wrong at all? Similar code works on another project, not mine, seen on the Internet

Via Active questions tagged javascript - Stack Overflow https://ift.tt/E4eXWyK

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...