Skip to main content

Fetched data is not updated after changes on next js ssr page

I've got this kind of situation. My application has two pages. The main one is used to show statistics about the user's account. And the user can go to the second one to change these statistics. Both of these pages are server side rendered. So when I go to the first page I see my statistics fetched from the database. I go to the second one and change the data. Then I go back. To go back I use component from "next/link". And here I am on the first page and I see the initial statistics. It seems like the page memoizing fetched data and doesn't update it when I go back. So what do I do to update the data every time the user goes to the statistics page? It's looks like there's no other option except to make it a client component and use useEffect(() => {}, []) hook. What do you think?

Here's the statistics page:

import Sidebar from "@/components/sidebar/component"
import Header from "@/components/header/component"
import StatisticsBoard from "@/components/statisticsBoard/component"
import { getServerSession } from "next-auth"
import { authOptions } from "@/app/api/auth/[...nextauth]/route"
import { redirect } from "next/navigation"

export default async function Home()
{
    const session = await getServerSession(authOptions)
    if(!session) redirect("/")
    let loadedAllocations = (await (await fetch("http://localhost:3000/api/getAllocations", {

        method: "POST",
        headers: { "Content-Type": "application/json" },
        body: JSON.stringify({  userId: session.user.id })

    })).json()).allocations

    const loadedAllocaitonsGroups = (await (await fetch("http://localhost:3000/api/getAllocationsGroups", {

        method: "POST",
        headers: { "Content-Type": "application/json" },
        body: JSON.stringify({  userId: session.user.id })

    })).json()).allocationsGroups

    const loadedLedgerEntries = (await (await fetch("http://localhost:3000/api/getLedgerEntries", {

        method: "POST",
        headers: { "Content-Type": "application/json" },
        body: JSON.stringify({  userId: session.user.id, orderBy: { date: "asc" } })

    })).json()).ledgerEntries

    const loadedCategories = (await (await fetch("http://localhost:3000/api/getCategories", {

        method: "POST",
        headers: { "Content-Type": "application/json" },
        body: JSON.stringify({  userId: session.user.id })

    })).json()).categories

    let allocationsGroupsMap = {}

    for(const groupData of loadedAllocaitonsGroups) {

        if(!allocationsGroupsMap[groupData.id]) allocationsGroupsMap[groupData.id] = {}
        allocationsGroupsMap[groupData.id] = { name: groupData.name, allocationsData: [] }
    }

    for (const allocationData of loadedAllocations) {

        if (!allocationData.allocationsGroupId) continue
        allocationsGroupsMap[allocationData.allocationsGroupId].allocationsData.push(allocationData)
    }

    loadedAllocations = loadedAllocations.filter((value) => !value.allocationsGroupId)

    let incomesCategoriesMap = {}
    let costsCategoriesMap = {}
    let total = 0
    let statistics = []

    for(const category of loadedCategories) {
        
        if(category.type[0] == 'I') incomesCategoriesMap[category.id] = { name: category.name, total: 0 }
        else costsCategoriesMap[category.id] = { name: category.name, total: 0 }
    }

    for(let i = 0; i < loadedLedgerEntries.length; i++) {

        if(incomesCategoriesMap.hasOwnProperty(loadedLedgerEntries[i].categoryId)) {

            incomesCategoriesMap[loadedLedgerEntries[i].categoryId].total += loadedLedgerEntries[i].amount
            total += loadedLedgerEntries[i].amount
        }

        else {
            
        costsCategoriesMap[loadedLedgerEntries[i].categoryId].total += loadedLedgerEntries[i].amount
            total -= loadedLedgerEntries[i].amount
        }

        statistics.push({ date: loadedLedgerEntries[i].date, money: total  })
    }

    console.log("rendering server page...");

    return (

        <div className="top-0 left-0 flex flex-row h-screen" 
            style=>
            <Sidebar session={ session } loadedAllocations={ loadedAllocations } loadedAllocationsGroups={ Object.values(allocationsGroupsMap) }/>
            <div className="w-full m-3 flex flex-col">
                <Header session={ session } />
                <StatisticsBoard statistics={ statistics } incomesCategoriesMap={ incomesCategoriesMap} costsCategoriesMap={ costsCategoriesMap }/>
            </div>
        </div>
    )
}
Via Active questions tagged javascript - Stack Overflow https://ift.tt/3ZLnYNh

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...