Skip to main content

How to remove annotation and why the arrow points to different area not this circle?

I am learning the D3 library. And I met two questions:

  1. why the arrow points to a different area, not this circle? 2. How to remove annotation when mouse out?

We can see the arrow points to another area, not the red circle. And I am struggling with how to remove annotation after the mouse is out.

Needs help. ;>

enter image description here

    function stringToNumber(data){ //convert "string" to "number"
      data.Year = +data.Year;
      data.Inflation = +data.Inflation;
      data.IntentionalHomicides = +data.IntentionalHomicides;
      data.LifeExpectancy= +data.LifeExpectancy;
      data.Population = +data.Population;
      data.SuicideMortality = +data.SuicideMortality;
      data.Unemployment = +data.Unemployment;
      data.HDI = +data.HDI;


  }
<html>
<script src="123123.js"></script>    

<script src = "https://unpkg.com/topojson@3.0.2/dist/topojson.js"></script>
<body>
    <script src = "https://unpkg.com/d3@5.6.0/dist/d3.min.js"></script>
    <script src="https://rawgit.com/susielu/d3-annotation/master/d3-annotation.min.js"></script>
    
    <form>
    <select id="ddlViewBy">
      <option value="1">test1</option>
      <option value="2" selected="selected">test2</option>
      <option value="3">test3</option>
    </select>
    <div>
        <svg id="SVG"></svg>
    </div>
  </form>
</body>

<script>
var e = document.getElementById("ddlViewBy");
function show(){
  var as = document.forms[0].ddlViewBy.value;
  var strUser = e.options[e.selectedIndex].value;
  a = parseInt(as);
  console.log(typeof(a));
  return a;
}
e=show();
console.log(e);



const height = screen.height;
const width = screen.width;
const csvData = d3.csv("https://raw.githubusercontent.com/ZiZi1noob/UIUC416-DataVis-FinalProject/main/fixedData11.csv");
var sortedObjectArray = [];
var getYear = 1998;


csvData.then(function(data){
  data.forEach(function(data){   // calls a function once for each element in an array, in order
      stringToNumber(data);
      if (data["Year"] == getYear){
          sortedObjectArray.push(data);} //filter by country and leave the targeted data with specific country
      });
      console.log(sortedObjectArray);
      bubbleChart(sortedObjectArray);
    });



function bubbleChart(data){
  //scaleLog()
  let xScale = d3.scaleLinear()
                    .domain([40,100])
                    .range([0,width*0.5]);
  let yScale = d3.scaleLinear()
  //reverse range instead of domain
                    .domain([5000000,130000000])
                    .range([height*0.5,0]);

    svg =d3.select("svg")
        .attr("height", height*0.8)
        .attr("width",width*0.8)
        .append("g")
        .attr("transform", "translate(100,0)")
        .selectAll("circle")
        .data(data)
        .enter()
        .append("circle")
        .attr("fill", "lightblue")
        .attr("cy", function(data,i){return xScale(data.LifeExpectancy)})
        .attr("cx", function(data,i){return yScale(data.Population)})
        .attr("r", function(data){return data.HDI*10});

    let yAxis =d3.axisLeft(yScale)
        .tickFormat(d3.format("~s"));

    let xAxis = d3.axisBottom(xScale)
        .tickFormat(d3.format("~s"));

    d3.select("svg").append("g")
        .attr("transform", "translate(100,100)")
        .call(yAxis);

    d3.select("svg")
    .append("g")
    .attr("transform", "translate(100,640)")
    .call(xAxis);
 
    d3.selectAll("circle")  //add anotation
        .on("mouseover", function(data){
            console.log("cx",this.getAttribute("cx"));
            console.log("cy",this.getAttribute("cy"));
            let dotCX = this.getAttribute("cx");
            let dotCY = this.getAttribute("cy");
            let dotPop = data.Population;
            let dotLifeEp = data.LifeExpectancy;
            let dotHDI =data.HDI;
            let dotCty = data.Country;

            //let annotations =AnotationBubble(dotCX,dotCY,dotPop,dotLifeEp,dotHDI);
            
            let makeAnnotations = d3.annotation()
                    //.annotations(annotations);
                    .annotations(AnotationBubble(dotCX,dotCY,dotPop,dotLifeEp,dotHDI,dotCty));
            d3.select("#SVG")
            .append("g")
                .style("font-size", 25)
                .style("font-weight", "bold")
                .call(makeAnnotations);

            d3.select(this)
                .transition()
                .attr("fill","red")
                .delay(function(d,i){return 100*i;})
                .duration(1000)
                .attr("r", function(d){return d.HDI*35});
            })
        .on("mouseout", function(data)
        {   console.log("out works");

                d3.select(this)
                .transition()
                .delay(function(d,i){return 100*i;})
                .duration(1000)
                .attr("r", function(d){return d.HDI});

                //d3.select(this).remove();
        }
            );       

    
}
function AnotationBubble(dotCX,dotCY,dotPop,dotLifeEp,dotHDI,dotCty){    // Add annotation to the chart
    const annotations = [
        {
            note: {
                title: (dotLifeEp,dotPop,dotHDI),
                label: dotCty,
            },
    
            connector: {
                end: "arrow",        // none, or arrow or dot
                type: "line",       // Line or curve
                endScale: 2,
                lineType : "horizontal",
                },
            color: ["red"],
            x: dotCX,
            y: dotCY,
            dy: 50,
            dx: 50,
            type: d3.annotationCalloutElbow,
            //subject: { radius: 20, radiusPadding: 10 },
        }]
        return annotations;
    }


</script>
  </html>
Via Active questions tagged javascript - Stack Overflow https://ift.tt/2FdjaAW

Comments

Popular posts from this blog

How to show number of registered users in Laravel based on usertype?

i'm trying to display data from the database in the admin dashboard i used this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count(); echo $users; ?> and i have successfully get the correct data from the database but what if i want to display a specific data for example in this user table there is "usertype" that specify if the user is normal user or admin i want to user the same code above but to display a specific usertype i tried this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count()->WHERE usertype =admin; echo $users; ?> but it didn't work, what am i doing wrong? source https://stackoverflow.com/questions/68199726/how-to-show-number-of-registered-users-in-laravel-based-on-usertype

Why is my reports service not connecting?

I am trying to pull some data from a Postgres database using Node.js and node-postures but I can't figure out why my service isn't connecting. my routes/index.js file: const express = require('express'); const router = express.Router(); const ordersCountController = require('../controllers/ordersCountController'); const ordersController = require('../controllers/ordersController'); const weeklyReportsController = require('../controllers/weeklyReportsController'); router.get('/orders_count', ordersCountController); router.get('/orders', ordersController); router.get('/weekly_reports', weeklyReportsController); module.exports = router; My controllers/weeklyReportsController.js file: const weeklyReportsService = require('../services/weeklyReportsService'); const weeklyReportsController = async (req, res) => { try { const data = await weeklyReportsService; res.json({data}) console...

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...