Skip to main content

Canvas doesn't working in safari Iphone ReactJS

I tried everything, someone knows how to make canvas works in safari iphone, or an alternative approach that works similar? I have this component that tracks faces from react, but it's not working only on iphone, i modified it inoumerous times, but nothing works, someone can help me?

FaceDetector.js

import _regeneratorRuntime from "@babel/runtime/regenerator";
import _asyncToGenerator from "@babel/runtime/helpers/esm/asyncToGenerator";
import _slicedToArray from "@babel/runtime/helpers/esm/slicedToArray";
import _classCallCheck from "@babel/runtime/helpers/esm/classCallCheck";
import _createClass from "@babel/runtime/helpers/esm/createClass";
import _possibleConstructorReturn from "@babel/runtime/helpers/esm/possibleConstructorReturn";
import _getPrototypeOf from "@babel/runtime/helpers/esm/getPrototypeOf";
import _inherits from "@babel/runtime/helpers/esm/inherits";
import React, { Component } from 'react';
import * as pico from './pico';

var FaceDetector =
/*#__PURE__*/
function (_Component) {
  _inherits(FaceDetector, _Component);

  function FaceDetector(props) {
    var _this;

    _classCallCheck(this, FaceDetector);

    _this = _possibleConstructorReturn(this, _getPrototypeOf(FaceDetector).call(this, props));

    _this.performPartialWork = function () {
      if (!_this.workQueue.length || !_this.mounted) return;

      var firstTask = _this.workQueue.shift();

      var taskStartTime = performance.now();
      _this.carryOverData = firstTask.action(_this.carryOverData);
      _this.taskTimes[firstTask.tag] = performance.now() - taskStartTime;
      if (!_this.workQueue.length) return;
      requestIdleCallback(function (deadline) {
        if (!_this.taskTimes[_this.workQueue[0].tag]) _this.taskTimes[_this.workQueue[0].tag] = 1;

        if (_this.taskTimes[_this.workQueue[0].tag] < deadline.timeRemaining() * 0.9) {
          _this.performPartialWork();
        }
      });
    };

    _this.detectionLoop = function () {
      _this.performPartialWork();

      requestAnimationFrame(_this.detectionLoop);
    };

    _this.relativeFaceLocation = function (faceData) {
      var widthIndex = _this.props.width / 100;
      var heightIndex = _this.props.height / 100;
      

      if (faceData && faceData.x) {
        var x = faceData.x,
            y = faceData.y,
            size = faceData.size,
            strength = faceData.strength;
        size = Math.round(size / widthIndex);
        y = Math.round(y / heightIndex);
        x = 100 - Math.round(x / widthIndex);
        x = Math.min(Math.max(x, 0), 100);
        y = Math.min(Math.max(y, 0), 100);
        strength = Math.round(strength);
        return {
          x: x,
          y: y,
          size: size,
          strength: strength
        };
      }
    };

    _this.calculateFaceSizeScale = function (detectionStrength) {
      var s = detectionStrength;

      if (s > 1000) {
        return 1.2;
      } else if (s < 1000 && s > 900) {
        return 1.1;
      } else if (s < 900 && s > 800) {
        return 1.075;
      } else if (s < 800 && s > 700) {
        return 1.05;
      } else if (s < 700 && s > 600) {
        return 1.03;
      } else if (s < 600 && s > 500) {
        return 1.01;
      } else if (s < 500 && s > 400) {
        return 1.005;
      } else if (s < 400 && s > 300) {
        return 0.995;
      } else if (s < 300 && s > 200) {
        return 0.99;
      } else if (s < 200 && s > 100) {
        return 0.95;
      } else if (s < 100 && s > 50) {
        return 0.9;
      } else {
        return 0.8;
      }
    };

    _this.updatePerformanceQueue = function (detectionStart, detectionEnd, queue) {
      queue.push(detectionEnd - detectionStart);
      if (queue.length > 60) queue.shift();
      return queue;
    };

    _this.updateCanvas = function () {
      if(!_this.mounted){
        return;
      }
      if(_this.props.fixPosition == 'true'){
        var width = _this.props.width;
        var height = _this.props.height;
        _this.canvas.width = width;
        _this.canvas.height = height;
      }else{
        var width = _this.state.currentCanvasSizeIndex * 4;
        var height = _this.state.currentCanvasSizeIndex * 3;
        _this.canvas.width = Math.floor(width);
        _this.canvas.height = Math.floor(height);
      }

      _this.video.onplay = function() {
        _this.ctx.drawImage(_this.video, 0, 0, width, height);
  
        if (_this.state.facesData[0]) {
          _this.state.facesData.map(function (face) {
            _this.ctx.beginPath();
  
            _this.ctx.arc(face.x, face.y, face.size / 2, 0, 2 * Math.PI, false);
  
            _this.ctx.lineWidth = 3;
            _this.ctx.strokeStyle = face.strength < 100 ? 'red' : '#3D8980';
  
            _this.ctx.stroke();
          });
        }
      }
      
    };

    _this.detect = function () {
      var imageData = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : 1;
      var detectedFacesData = pico.processfn(imageData, _this.baseFaceSize * _this.state.faceScale, _this.state.currentCanvasSizeIndex * 3, _this.state.currentCanvasSizeIndex * 4).filter(function (face) {
        return face[3] > 20;
      });
      var newFacesData = [];
      var bestDetectionData = [0, 0];

      if (detectedFacesData.length) {
        detectedFacesData.map(function (detectedFaceData, index) {
          var newFaceData = {};

          var _detectedFaceData = _slicedToArray(detectedFaceData, 4),
              y = _detectedFaceData[0],
              x = _detectedFaceData[1],
              size = _detectedFaceData[2],
              strength = _detectedFaceData[3];

          newFaceData.y = y;
          newFaceData.x = x;
          newFaceData.size = size;
          newFaceData.strength = strength;

          if (bestDetectionData[0] < strength) {
            bestDetectionData = [strength, index];
          }

          newFacesData.push(newFaceData);
        });
      }

      var _this$state = _this.state,
          faceScale = _this$state.faceScale,
          currentCanvasSizeIndex = _this$state.currentCanvasSizeIndex,
          noFaceFrames = _this$state.noFaceFrames,
          highFaceFrames = _this$state.highFaceFrames;
      var newCanvasSizeIndex = currentCanvasSizeIndex;
      var newNoFaceFrames = noFaceFrames;
      var newHighFaceFrames = highFaceFrames;

      var _bestDetectionData = bestDetectionData,
          _bestDetectionData2 = _slicedToArray(_bestDetectionData, 1),
          bestDetection = _bestDetectionData2[0];

      var newFaceScale = Math.max(_this.calculateFaceSizeScale(bestDetection), 0.01) || faceScale;

      if (bestDetection > 250) {
        if (newHighFaceFrames < 1) {
          newHighFaceFrames = newHighFaceFrames + 1;
        } else {
          newCanvasSizeIndex = newCanvasSizeIndex - 2;
          newHighFaceFrames = 0;
        }
      } else {
        newHighFaceFrames = 0;
      }

      if (!newFacesData.length) {
        if (newNoFaceFrames < 1) {
          newNoFaceFrames = newNoFaceFrames + 1;
        } else {
          newCanvasSizeIndex = Math.min(newCanvasSizeIndex + 2, 200);
          newNoFaceFrames = 0;
        }
      } else {
        newNoFaceFrames = 0;
      }

      return {
        newFacesData: newFacesData,
        newFaceScale: newFaceScale,
        newCanvasSizeIndex: newCanvasSizeIndex,
        newNoFaceFrames: newNoFaceFrames,
        newHighFaceFrames: newHighFaceFrames
      };
    };

    _this.ctx = null;
    _this.mounted = true;
    _this.imageData = null;
    _this.video = document.createElement("video");
    _this.baseFaceSize = 100;
    _this.workQueue = [];
    _this.taskTimes = {};
    _this.carryOverData = null;
    _this.tracks = null;
    _this.state = {
      currentCanvasSizeIndex: 100,
      facesData: {},
      faceScale: 1,
      first: null,
      height: _this.maxHeight,
      noFaceFrames: 0,
      highFaceFrames: 0,
      framesSinceUpdate: 0
    };
    return _this;
  }

  _createClass(FaceDetector, [{
    key: "componentDidMount",
    value: function () {
      var _componentDidMount = _asyncToGenerator(
      /*#__PURE__*/
      _regeneratorRuntime.mark(function _callee() {
        var stream;
        return _regeneratorRuntime.wrap(function _callee$(_context) {
          while (1) {
            switch (_context.prev = _context.next) {
              case 0:
                _context.next = 2;
                this.video.controls = false;
                this.video.setAttribute('autoplay', '');
                this.video.setAttribute('muted', '');
                this.video.setAttribute('playsinline', '');

                navigator.mediaDevices.getUserMedia({
                  video: {facingMode: 'user'},
                  audio: false
                }).then(success => {
                  alert('got media device')
                  this.video.srcObject = success;
                  this.tracks = success.getTracks();
                  return success;
                }).catch(err => {
                  alert('Error media device')
                  return null;
                });

              case 2:
                stream = _context.sent;
                //this.tracks = stream.getTracks()
                this.video.play();
                /*
                if(navigator.platform == 'iPhone'){
                  this.video.setAttribute('autoplay','1')
                  this.video.setAttribute('playsinline','1')
                  this.video.srcObject = stream;
                }else{
                  this.video.srcObject = stream;
                  this.video.play();
                }*/
                this.ctx = this.canvas.getContext('2d', {
                  alpha: false
                });
                pico.picoInit();

                if (this.props.active) {
                  this.newWorkQueue();
                  this.detectionLoop();
                }

              case 8:
              case "end":
                return _context.stop();
            }
          }
        }, _callee, this);
      }));

      function componentDidMount() {
        return _componentDidMount.apply(this, arguments);
      }

      return componentDidMount;
    }()
  }, {
    key: "componentDidUpdate",
    value: function componentDidUpdate() {
      if (this.mounted && this.props.active && !this.workQueue.length) {
        this.newWorkQueue();
      }
    }
  }, { 
    key: "componentWillUnmount" ,
    value: function componentWillUnmount() {
      this.mounted = false;
      this.tracks.forEach( (track) => {
        track.stop();
      });
      this.video.srcObject = null;
    }
  }, {
    key: "render",
    value: function render() {
      if(!this.mounted){
        return;
      }
      var _this2 = this;

      var facesData = this.state.facesData;
      var relativeFacesData = facesData.length ? facesData.map(function (face) {
        return _this2.relativeFaceLocation(face);
      }) : [{
        x: null,
        y: null,
        size: null,
        strength: null
      }];
      return React.createElement(React.Fragment, null, React.createElement("canvas", {
        ref: function ref(_ref) {
          return _this2.canvas = _ref;
        },
        style: {
          display: this.props.showCanvas ? 'inline' : 'none'
        }
      }), this.props.children && this.props.children(relativeFacesData));
    }
  }, {
    key: "newWorkQueue",
    value: function newWorkQueue() {
      var _this3 = this;

      this.workQueue = [{
        action: this.updateCanvas,
        tag: 'updateCanvas'
      }, {
        action: function action() {
          _this3.imageData = _this3.ctx.getImageData(0, 0, _this3.state.currentCanvasSizeIndex * 4, _this3.state.currentCanvasSizeIndex * 3).data;
        },
        tag: 'getContextData'
      }, {
        tag: 'detectAndSetState',
        action: function action() {
          var _this3$detect = _this3.detect(_this3.imageData),
              newFacesData = _this3$detect.newFacesData,
              newFaceScale = _this3$detect.newFaceScale,
              newCanvasSizeIndex = _this3$detect.newCanvasSizeIndex,
              newNoFaceFrames = _this3$detect.newNoFaceFrames,
              newHighFaceFrames = _this3$detect.newHighFaceFrames;

          _this3.setState(function () {
            return {
              facesData: newFacesData[0] ? newFacesData : _this3.state.facesData,
              faceScale: newFaceScale,
              currentCanvasSizeIndex: newCanvasSizeIndex,
              noFaceFrames: newNoFaceFrames,
              highFaceFrames: newHighFaceFrames,
              framesSinceUpdate: 0
            };
          });
        }
      }];
    }
  }]);

  return FaceDetector;
}(Component);

export { FaceDetector as default };
FaceDetector.defaultProps = {
  active: true,
  showCanvas: false
};

pico.js

/* This library is released under the MIT license, see https://github.com/tehnokv/picojs */
var unpack_cascade = function unpack_cascade(bytes) {
  var dview = new DataView(new ArrayBuffer(4)); //  we skip the first 8 bytes of the cascade file
  //    (cascade version number and some data used during the learning process)

  var p = 8; // read the depth (size) of each tree first: a 32-bit signed integer

  dview.setUint8(0, bytes[p + 0]);
  dview.setUint8(1, bytes[p + 1]);
  dview.setUint8(2, bytes[p + 2]);
  dview.setUint8(3, bytes[p + 3]);
  var tdepth = dview.getInt32(0, true);
  p += 4; //    next, read the number of trees in the cascade: another 32-bit signed integer

  dview.setUint8(0, bytes[p + 0]);
  dview.setUint8(1, bytes[p + 1]);
  dview.setUint8(2, bytes[p + 2]);
  dview.setUint8(3, bytes[p + 3]);
  var ntrees = dview.getInt32(0, true);
  p += 4; //    read the actual trees and cascade thresholds

  var tcodes = [];
  var tpreds = [];
  var thresh = [];

  for (var t = 0; t < ntrees; ++t) {
    var i = void 0; // read the binary tests placed in internal tree nodes

    Array.prototype.push.apply(tcodes, [0, 0, 0, 0]);
    Array.prototype.push.apply(tcodes, bytes.slice(p, p + 4 * Math.pow(2, tdepth) - 4));
    p = p + 4 * Math.pow(2, tdepth) - 4; // read the prediction in the leaf nodes of the tree

    for (i = 0; i < Math.pow(2, tdepth); ++i) {
      dview.setUint8(0, bytes[p + 0]);
      dview.setUint8(1, bytes[p + 1]);
      dview.setUint8(2, bytes[p + 2]);
      dview.setUint8(3, bytes[p + 3]);
      tpreds.push(dview.getFloat32(0, true));
      p = p + 4;
    } // read the threshold


    dview.setUint8(0, bytes[p + 0]);
    dview.setUint8(1, bytes[p + 1]);
    dview.setUint8(2, bytes[p + 2]);
    dview.setUint8(3, bytes[p + 3]);
    thresh.push(dview.getFloat32(0, true));
    p = p + 4;
  }

  tcodes = new Int8Array(tcodes);
  tpreds = new Float32Array(tpreds);
  thresh = new Float32Array(thresh); // construct the classification function from the read data

  function classify_region(r, c, s, pixels, ldim) {
    r = 256 * r;
    c = 256 * c;
    var root = 0;
    var o = 0.0;
    var pow2tdepth = Math.pow(2, tdepth) >> 0; // '>>0' transforms this number to int

    for (var i = 0; i < ntrees; ++i) {
      var idx = 1;

      for (var j = 0; j < tdepth; ++j) {
        // we use '>> 8' here to perform an integer division: this seems important for performance
        idx = 2 * idx + (pixels[(r + tcodes[root + 4 * idx + 0] * s >> 8) * ldim + (c + tcodes[root + 4 * idx + 1] * s >> 8)] <= pixels[(r + tcodes[root + 4 * idx + 2] * s >> 8) * ldim + (c + tcodes[root + 4 * idx + 3] * s >> 8)]);
      }

      o = o + tpreds[pow2tdepth * i + idx - pow2tdepth];
      if (o <= thresh[i]) return -1;
      root += 4 * pow2tdepth;
    }

    return o - thresh[ntrees - 1];
  }

  return classify_region;
};

var facefinder_classify_region = function facefinder_classify_region(r, c, s, pixels, ldim) {
  return -1.0;
};

var update_memory = instantiate_detection_memory(5);
export var picoInit = function picoInit() {
  var cascadeurl = 'https://raw.githubusercontent.com/nenadmarkus/pico/c2e81f9d23cc11d1a612fd21e4f9de0921a5d0d9/rnt/cascades/facefinder';
  fetch(cascadeurl).then(function (response) {
    response.arrayBuffer().then(function (buffer) {
      var bytes = new Int8Array(buffer);
      facefinder_classify_region = unpack_cascade(bytes);
      console.log('* cascade loaded');
    });
  });
};

var run_cascade = function run_cascade(image, classify_region, params) {
  var pixels = image.pixels;
  var nrows = image.nrows;
  var ncols = image.ncols;
  var ldim = image.ldim;
  var shiftfactor = params.shiftfactor;
  var minsize = params.minsize;
  var maxsize = params.maxsize;
  var scalefactor = params.scalefactor;
  var scale = minsize;
  var detections = [];

  while (scale <= maxsize) {
    var step = Math.max(shiftfactor * scale, 1) >> 0; // '>>0' transforms this number to int

    var offset = scale / 2 + 1 >> 0;

    for (var r = offset; r <= nrows - offset; r += step) {
      for (var c = offset; c <= ncols - offset; c += step) {
        var q = classify_region(r, c, scale, pixels, ldim);
        if (q > 0.0) detections.push([r, c, scale, q]);
      }
    }

    scale = scale * scalefactor;
  }

  return detections;
};

var cluster_detections = function cluster_detections(dets, iouthreshold) {
  //    sort detections by their score
  dets = dets.sort(function (a, b) {
    return b[3] - a[3];
  }); //    this helper function calculates the intersection over union for two detections

  function calculate_iou(det1, det2) {
    // unpack the position and size of each detection
    var r1 = det1[0],
        c1 = det1[1],
        s1 = det1[2];
    var r2 = det2[0],
        c2 = det2[1],
        s2 = det2[2]; // calculate detection overlap in each dimension

    var overr = Math.max(0, Math.min(r1 + s1 / 2, r2 + s2 / 2) - Math.max(r1 - s1 / 2, r2 - s2 / 2));
    var overc = Math.max(0, Math.min(c1 + s1 / 2, c2 + s2 / 2) - Math.max(c1 - s1 / 2, c2 - s2 / 2)); // calculate and return IoU

    return overr * overc / (s1 * s1 + s2 * s2 - overr * overc);
  } //  do clustering through non-maximum suppression


  var assignments = new Array(dets.length).fill(0);
  var clusters = [];

  for (var i = 0; i < dets.length; ++i) {
    // is this detection assigned to a cluster?
    if (assignments[i] == 0) {
      // it is not:
      // now we make a cluster out of it and see whether some other detections belong to it
      var r = 0.0,
          c = 0.0,
          s = 0.0,
          q = 0.0,
          n = 0;

      for (var j = i; j < dets.length; ++j) {
        if (calculate_iou(dets[i], dets[j]) > iouthreshold) {
          assignments[j] = 1;
          r = r + dets[j][0];
          c = c + dets[j][1];
          s = s + dets[j][2];
          q = q + dets[j][3];
          n = n + 1;
        }
      } // make a cluster representative


      clusters.push([r / n, c / n, s / n, q]);
    }
  }

  return clusters;
};

function instantiate_detection_memory(size) {
  //    initialize a circular buffer of `size` elements
  var n = 0,
      memory = [];

  for (var i = 0; i < size; ++i) {
    memory.push([]);
  } //  build a function that:
  //    (1) inserts the current frame's detections into the buffer;
  //    (2) merges all detections from the last `size` frames and returns them


  function update_memory(dets) {
    memory[n] = dets;
    n = (n + 1) % memory.length;
    dets = [];

    for (i = 0; i < memory.length; ++i) {
      dets = dets.concat(memory[i]);
    } //


    return dets;
  }

  return update_memory;
} //    (2) define a function to transform an RGBA image to grayscale


var rgba_to_grayscale = function rgba_to_grayscale(rgba, nrows, ncols) {
  var gray = new Uint8Array(nrows * ncols);

  for (var r = 0; r < nrows; ++r) {
    for (var c = 0; c < ncols; ++c) {
      // gray = 0.2*red + 0.7*green + 0.1*blue
      gray[r * ncols + c] = (2 * rgba[r * 4 * ncols + 4 * c + 0] + 7 * rgba[r * 4 * ncols + 4 * c + 1] + 1 * rgba[r * 4 * ncols + 4 * c + 2]) / 10;
    }
  }

  return gray;
};

export var processfn = function processfn(imageData, minFaceSize, height, width) {
  if (!imageData) return null;
  var dets; // prepare input to `run_cascade`

  var image = {
    "pixels": rgba_to_grayscale(imageData, height, width),
    "nrows": height,
    "ncols": width,
    "ldim": width
  };
  var params = {
    "shiftfactor": 0.1,
    // move the detection window by 10% of its size
    "minsize": minFaceSize,
    // minimum size of a face
    "maxsize": 1000,
    // maximum size of a face
    "scalefactor": 1.1 // for multiscale processing: resize the detection window by 10% when moving to the higher scale
    // run the cascade over the frame and cluster the obtained detections
    // dets is an array that contains (r, c, s, q) quadruplets
    // (representing row, column, scale and detection score)

  };
  dets = run_cascade(image, facefinder_classify_region, params);
  dets = update_memory(dets);
  dets = cluster_detections(dets, 0.2); // set IoU threshold to 0.2

  return dets;
};

The specific part that is not working in iphone:

_this.updateCanvas = function () {
      if(!_this.mounted){
        return;
      }
      if(_this.props.fixPosition == 'true'){
        var width = _this.props.width;
        var height = _this.props.height;
        _this.canvas.width = width;
        _this.canvas.height = height;
      }else{
        var width = _this.state.currentCanvasSizeIndex * 4;
        var height = _this.state.currentCanvasSizeIndex * 3;
        _this.canvas.width = Math.floor(width);
        _this.canvas.height = Math.floor(height);
      }

      _this.video.onplay = function() {
        _this.ctx.drawImage(_this.video, 0, 0, width, height);
  
        if (_this.state.facesData[0]) {
          _this.state.facesData.map(function (face) {
            _this.ctx.beginPath();
  
            _this.ctx.arc(face.x, face.y, face.size / 2, 0, 2 * Math.PI, false);
  
            _this.ctx.lineWidth = 3;
            _this.ctx.strokeStyle = face.strength < 100 ? 'red' : '#3D8980';
  
            _this.ctx.stroke();
          });
        }
      }
      
    };

Using component in reactjs:

import React from 'react'
import FaceDetector from './FaceDetector.js'

export default class foo extends React.Component{
  ...
render(){
  return(
<FaceDetector className='canvas' active='false' showCanvas='false' fixPosition='true' width={400} height={400}>
    {position => {console.log(position)}}
</FaceDetector>
  );
}
}
 

if someone could help me, i will really appreciate it. Thank you guys very much

Via Active questions tagged javascript - Stack Overflow https://ift.tt/2FdjaAW

Comments

Popular posts from this blog

How to show number of registered users in Laravel based on usertype?

i'm trying to display data from the database in the admin dashboard i used this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count(); echo $users; ?> and i have successfully get the correct data from the database but what if i want to display a specific data for example in this user table there is "usertype" that specify if the user is normal user or admin i want to user the same code above but to display a specific usertype i tried this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count()->WHERE usertype =admin; echo $users; ?> but it didn't work, what am i doing wrong? source https://stackoverflow.com/questions/68199726/how-to-show-number-of-registered-users-in-laravel-based-on-usertype

How to split a rinex file if I need 24 hours data

Trying to divide rinex file using the command gfzrnx but getting this error. While doing that getting this error msg 'gfzrnx' is not recognized as an internal or external command Trying to split rinex file using the command gfzrnx. also install'gfzrnx'. my doubt is I need to run this program in 'gfzrnx' or in 'cmdprompt'. I am expecting a rinex file with 24 hrs or 1 day data.I Have 48 hrs data in RINEX format. Please help me to solve this issue. source https://stackoverflow.com/questions/75385367/how-to-split-a-rinex-file-if-i-need-24-hours-data

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...