Skip to main content

Confusion between commands.Bot and discord.Client | Which one should I use?

Whenever you look at YouTube tutorials or code from this website there is a real variation. Some developers use client = discord.Client(intents=intents) while the others use bot = commands.Bot(command_prefix="something", intents=intents). Now I know slightly about the difference but I get errors from different places from my code when I use either of them and its confusing. Especially since there has a few changes over the years in discord.py it is hard to find the real difference.

I tried sticking to discord.Client then I found that there are more features in commands.Bot. Then I found errors when using commands.Bot.

An example of this is:

When I try to use commands.Bot

client = commands.Bot(command_prefix=">",intents=intents)

async def load():
    for filename in os.listdir("./Cogs"):
      if filename.endswith(".py"):
        client.load_extension(f"Cogs.{filename[:-3]}")

The above doesnt giveany response from my Cogs and also says

RuntimeWarning: coroutine 'BotBase.load_extension' was never awaited  
  client.load_extension(f"Cogs.{filename[:-3]}")
RuntimeWarning: Enable tracemalloc to get the object allocation traceback`.

Then when I try to use discord.Client

client = discord.Client(command_prefix=">",intents=intents)
async def load():
    for filename in os.listdir("./Cogs"):
      if filename.endswith(".py"):
        client.load_extension(f"Cogs.{filename[:-3]}")

The above also gives me an error: Exception has occurred: AttributeError 'Client' object has no attribute 'load_extension'

Which one is better in the long run? What is the exact difference?



source https://stackoverflow.com/questions/74503328/confusion-between-commands-bot-and-discord-client-which-one-should-i-use

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...