Skip to main content

Disable ssl verification on a third party module using HTTPX

I'm using a module that uses httpx to make a request. Because of my company's network policy, I get a CERTIFICATE_VERIFY_FAILED every time I try to run my code. The data I'm sending and receiving in the request is not sensitive so I want to disable the SSL verification on the module.

If I were to write the request I could use a session as such:

client = httpx.Client(**kwargs, verify=False)

But the request is inside the module.

Blender did an excellent response on this stack overflow answer where they wrote a context manager with the code bellow but the code does not work for the httpx module:

import warnings
import contextlib

import requests
from urllib3.exceptions import InsecureRequestWarning

old_merge_environment_settings = requests.Session.merge_environment_settings

@contextlib.contextmanager
def no_ssl_verification():
    opened_adapters = set()

    def merge_environment_settings(self, url, proxies, stream, verify, cert):
        # Verification happens only once per connection so we need to close
        # all the opened adapters once we're done. Otherwise, the effects of
        # verify=False persist beyond the end of this context manager.
        opened_adapters.add(self.get_adapter(url))

        settings = old_merge_environment_settings(self, url, proxies, stream, verify, cert)
        settings['verify'] = False

        return settings

    requests.Session.merge_environment_settings = merge_environment_settings

    try:
        with warnings.catch_warnings():
            warnings.simplefilter('ignore', InsecureRequestWarning)
            yield
    finally:
        requests.Session.merge_environment_settings = old_merge_environment_settings

        for adapter in opened_adapters:
            try:
                adapter.close()
            except:
                pass

Is there a way I could replicate the same behavior inside a request made through httpx?



source https://stackoverflow.com/questions/75726455/disable-ssl-verification-on-a-third-party-module-using-httpx

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...