Skip to main content

How to submit Apache Airflow EMR job on EC2?

I am trying to submit EMR jobs. EMR on EC2. I am suing the code given by Airflow. Installed Airflow with Docker as recommended by Apache Airflow.

This is given in automatic steps https://airflow.apache.org/docs/apache-airflow-providers-amazon/2.2.0/_modules/airflow/providers/amazon/aws/example_dags/example_emr_job_flow_automatic_steps.html

from datetime import timedelta from airflow import DAG from airflow.providers.amazon.aws.operators.emr_create_job_flow import EmrCreateJobFlowOperator from airflow.providers.amazon.aws.sensors.emr_job_flow import EmrJobFlowSensor from airflow.utils.dates import days_ago

SPARK_STEPS = [ { 'Name': 'calculate_pi', 'ActionOnFailure': 'CONTINUE', 'HadoopJarStep': { 'Jar': 'command-runner.jar', 'Args': ['/usr/lib/spark/bin/run-example', 'SparkPi', '10'], }, } ]

JOB_FLOW_OVERRIDES = { 'Name': 'PiCalc', 'ReleaseLabel': 'emr-5.29.0', 'Instances': { 'InstanceGroups': [ { 'Name': 'Master node', 'Market': 'SPOT', 'InstanceRole': 'MASTER', 'InstanceType': 'm1.medium', 'InstanceCount': 1, } ], 'KeepJobFlowAliveWhenNoSteps': False, 'TerminationProtected': False, }, 'Steps': SPARK_STEPS, 'JobFlowRole': 'EMR_EC2_DefaultRole', 'ServiceRole': 'EMR_DefaultRole', }

with DAG( dag_id='emr_job_flow_automatic_steps_dag', default_args={ 'owner': 'airflow', 'depends_on_past': False, 'email': ['airflow@example.com'], 'email_on_failure': False, 'email_on_retry': False, }, dagrun_timeout=timedelta(hours=2), start_date=days_ago(2), schedule_interval='0 3 * * *', tags=['example'], ) as dag:

# [START howto_operator_emr_automatic_steps_tasks]
job_flow_creator = EmrCreateJobFlowOperator(
    task_id='create_job_flow',
    job_flow_overrides=JOB_FLOW_OVERRIDES,
    aws_conn_id='aws_default',
    emr_conn_id='emr_default',
)

job_sensor = EmrJobFlowSensor(
    task_id='check_job_flow',
    job_flow_id=job_flow_creator.output,
    aws_conn_id='aws_default',
)
# [END howto_operator_emr_automatic_steps_tasks]

# Task dependency created via `XComArgs`:
#   job_flow_creator >> job_sensor

########################################### Issues are:#

  1. from airflow.providers.amazon.aws.operators.emr_create_job_flow import EmrCreateJobFlowOperator
    from airflow.providers.amazon.aws.sensors.emr_job_flow import EmrJobFlowSensor

give error saying cannot import module though amazon providers is installed in my scheduler container. They can be imported using (given in manual steps)

https://airflow.apache.org/docs/apache-airflow-providers-amazon/7.4.1/_modules/tests/system/providers/amazon/aws/example_emr.html

from airflow.providers.amazon.aws.operators.emr import ( EmrAddStepsOperator, EmrCreateJobFlowOperator, EmrModifyClusterOperator, EmrTerminateJobFlowOperator, )
from airflow.providers.amazon.aws.sensors.emr import EmrJobFlowSensor

  1. While submitting job ['Args': ['/usr/lib/spark/bin/run-example', 'SparkPi', '10'],] gives error saying \

"Exception in thread "main" java.lang.RuntimeException: java.io.IOException: Cannot run program "/usr/lib/spark/bin/run-example" (in directory "."): error=2, No such file or directory "

What is my issues here? Expecting some help. Thanks



source https://stackoverflow.com/questions/76017388/how-to-submit-apache-airflow-emr-job-on-ec2

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...