Skip to main content

Can't delete "^M\n" from a .txt file

I'm generating a .txt from a SQL database. But for some reason, some of my data is not just plain text.

My .txt file looks like this:

PC001|1FSTFJ|BE21|Rooftop 
PC002|JVQ2F9|BE22|Basement
PC003|JY1035W1|BE22|Basement^M\n

I tried some Python and Bash scripts with the help of gpt, but it doesn't work:

#!/bin/bash

file_path="file.txt"

sed -i 's/\^M\n//g' "$file_path"

This script literally does nothing, and I don't understand why.

And the Python script:

def clean_file(file_path):
    try:
        with open(file_path, 'r') as file:
            lines = file.readlines()

        cleaned_lines = []
        for line in lines:
            # Diviser la ligne en champs, en supposant qu'ils sont séparés par '|'
            fields = line.strip().split('|')
            
            # Nettoyer chaque champ individuellement
            cleaned_fields = [field.rstrip('M').strip() for field in fields]

            # Recombiner les champs nettoyés en une seule ligne
            cleaned_line = '|'.join(cleaned_fields)
            cleaned_lines.append(cleaned_line)

        with open(file_path, 'w') as file:
            # Écrit toutes les lignes nettoyées, avec un saut de ligne approprié après chaque ligne
            file.write('\n'.join(cleaned_lines))

        print("Le fichier a été nettoyé avec succès.")
    except Exception as e:
        print(f"Une erreur s'est produite : {str(e)}")

file_path = 'file.txt'

clean_file(file_path)

I also tried with .replace, because I saw that it could work, but it didn't for me.

def clean_file(file_path):
    try:
        with open(file_path, 'r') as file:
            lines = file.readlines()

        cleaned_lines = []
        for line in lines:
            # Diviser la ligne en champs, en supposant qu'ils sont séparés par '|'
            fields = line.split('|')
            
            # Nettoyer chaque champ individuellement
            cleaned_fields = [field.replace('M\n', '').strip() for field in fields]

            # Recombiner les champs nettoyés en une seule ligne
            cleaned_line = '|'.join(cleaned_fields).rstrip('\n')
            cleaned_lines.append(cleaned_line)

        with open(file_path, 'w') as file:
            file.write('\n'.join(cleaned_lines))

        print("Le fichier a été nettoyé avec succès.")
    except Exception as e:
        print(f"Une erreur s'est produite : {str(e)}")

file_path = 'file.txt'

clean_file(file_path)

With both Python scripts, I get this kind of result:

PC001|1FSTFJ|BE21|Rooftop 
PC002|JVQ2F9|BE22|Basement
PC003|JY1035W1|BE23|Basement
\n
PC004|FFJSFH43|BE24|Rooftop 

So there's not more ^M but there's still the \n, and it's on the next line.



source https://stackoverflow.com/questions/77805995/cant-delete-m-n-from-a-txt-file

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...