Skip to main content

How do I show a error message if no product is found?

I have a search.js file that reads a json file and retrieves information about some products, and then displays it in the page. I am trying to show a error message if no product is found when searching, and this part is almost working. If a search for a non-existent product, the error message appears correctly: enter image description here

The problem is, if I search for a product that the name isn't similar to another one, the error still appears.. for example: enter image description here

enter image description here

Json file structure is like this:

[
    {
        "nome": "Carro",
        "apelido": "ft.car",
        "desc": "descrição",
        "img": "/img/carro.png",
        "link": "/pag/carro.html"
    }, 
    {
        "nome": "Carreta Bi-Trem",
        "apelido": "ft.big.truck",
        "desc": "descrição",
        "img": "/img/carreta.png",
        "link": "/pag/carreta.html"
    }
...
]

HTML of the error div:

        <div class="col-12 d-none" id="avisoDeErro">
          <div class="alert alert-danger p-5 rounded shadow">
            <i class="bi bi-x-circle-fill"></i> <strong>Erro</strong>
            <hr>
            <div class="fs-1 ">
              Nenhum produto encontrado.
              <p class="fw-light">Acha que deveria ter algo aqui? Entre em contato com o suporte.</p>
            </div>
          </div>
        </div>

search.js file:

const produtosCardTemplate = document.querySelector("[data-produtos-template]");
const produtosCardContainer = document.querySelector("[data-produtos-cards-container]");
const searchInput = document.querySelector("[data-search]");

let produtos = [];

searchInput.addEventListener("input", (e) => {
    const value = e.target.value.toLowerCase()
    produtos.forEach(produto => {
        console.log(value)
        const isVisible = value.split(' ').every(word => produto.nome.toLowerCase().includes(word)) || value.split('.').every(word => produto.apelido.toLowerCase().includes(word))
        produto.element.classList.toggle("hide", !isVisible) //hide = display: none !important; 
        console.log(isVisible)
        
        // Show a error message
        if (!isVisible){
            let avisoErro = document.getElementById("avisoDeErro")
            avisoErro.classList.remove('d-none')
        } else {
            let avisoErro = document.getElementById("avisoDeErro")
            avisoErro.classList.add('d-none');
        }
    })
})

fetch("/produtos.json")
    .then(res => res.json())
    .then(data => {
        produtos = data.map(produto => {
            // console.log(produto)

            const card = produtosCardTemplate.content.cloneNode(true).children[0]
            const nome = card.querySelector("[data-nome]")
            const desc = card.querySelector("[data-desc]")
            const img = card.querySelector("[data-img]")
            const imgLink = card.querySelector("[data-img-link]")
            const link = card.querySelector("[data-link]")
            
            nome.textContent = produto.nome
            desc.textContent = produto.desc
            img.setAttribute("src", produto.img)
            imgLink.setAttribute("href", produto.link) 
            link.setAttribute("href", produto.link)

            produtosCardContainer.append(card)

            return {nome: produto.nome, apelido: produto.apelido, element: card}
        });
    });

I know that the problem is in my way of showing the error message

        if (!isVisible){
            let avisoErro = document.getElementById("avisoDeErro")
            avisoErro.classList.remove('d-none')
        } else {
            let avisoErro = document.getElementById("avisoDeErro")
            avisoErro.classList.add('d-none');
        }

But i can't think of another way of doing this

Tried changing the way to see if no product matched, with no success

Via Active questions tagged javascript - Stack Overflow https://ift.tt/6avZLAM

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...