Skip to main content

Convert all alpha characters of string to integers in separate columns within a pandas dataframe

I have a single column of strings that contain alpha numeric characters as follows:

AA128A
AA128B
AA128C
AA128D
AA128E
AA129A
AA129B
AA129C
CP100-10
CP100-11
CP100-12
CP100-13
CORSTG11A
CORSTG11B
CORSTG11C

I'm wanting to explode each individual character into separate columns and convert all alpha characters into their ASCII decimal value and retain the numeric values as they are. If the value is null after exploding the values, I want to replace it with -1.

I have been able to explode the values and replace nulls, however when I attempt to iterate over the values with the ord() function to convert the alpha characters, I get the error:

ord() expected string of length 1, but int found

Even if I create conditional analysis on the datatype within a for loop.

import numpy as np 
import pandas as pd 
from sklearn.preprocessing import OrdinalEncoder
from pandas.api.types import is_string_dtype
from pandas.api.types import is_numeric_dtype
loc_df = pd.read_csv('C:\\path\\to\\file.csv',index_col=False)
# new data frame with split value columns 
explode_df = loc_df["stoloc"].apply(lambda x: pd.Series(list(x)))
explode_df = explode_df.fillna(-1)
#Convert alpha characters to numeric
for char in explode_df:
    if is_string_dtype(explode_df[char]):
        explode_df_numeric[char] = ord(char)
    else:
        explode_df_numeric[char] = char

expected outcome



source https://stackoverflow.com/questions/70453457/convert-all-alpha-characters-of-string-to-integers-in-separate-columns-within-a

Comments

Popular posts from this blog

How to show number of registered users in Laravel based on usertype?

i'm trying to display data from the database in the admin dashboard i used this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count(); echo $users; ?> and i have successfully get the correct data from the database but what if i want to display a specific data for example in this user table there is "usertype" that specify if the user is normal user or admin i want to user the same code above but to display a specific usertype i tried this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count()->WHERE usertype =admin; echo $users; ?> but it didn't work, what am i doing wrong? source https://stackoverflow.com/questions/68199726/how-to-show-number-of-registered-users-in-laravel-based-on-usertype

Why is my reports service not connecting?

I am trying to pull some data from a Postgres database using Node.js and node-postures but I can't figure out why my service isn't connecting. my routes/index.js file: const express = require('express'); const router = express.Router(); const ordersCountController = require('../controllers/ordersCountController'); const ordersController = require('../controllers/ordersController'); const weeklyReportsController = require('../controllers/weeklyReportsController'); router.get('/orders_count', ordersCountController); router.get('/orders', ordersController); router.get('/weekly_reports', weeklyReportsController); module.exports = router; My controllers/weeklyReportsController.js file: const weeklyReportsService = require('../services/weeklyReportsService'); const weeklyReportsController = async (req, res) => { try { const data = await weeklyReportsService; res.json({data}) console...

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...