Skip to main content

Google App Engine Error: Server Error but can't find error in logs

My deployed Flask web app keeps throwing “Error: Server Error The server encountered an error and could not complete your request. Please try again in 30 seconds”. However, I can’t find any error in the logs:

2022-05-30 00:35:40 default[20220529t172208]  [2022-05-30 00:35:40 +0000] [10] [INFO] Starting gunicorn 20.1.0
2022-05-30 00:35:40 default[20220529t172208]  [2022-05-30 00:35:40 +0000] [10] [INFO] Listening at: http://0.0.0.0:8081 (10)
2022-05-30 00:35:40 default[20220529t172208]  [2022-05-30 00:35:40 +0000] [10] [INFO] Using worker: sync
2022-05-30 00:35:40 default[20220529t172208]  [2022-05-30 00:35:40 +0000] [15] [INFO] Booting worker with pid: 15
2022-05-30 00:35:42 default[20220529t172208]  2022-05-30 00:35:42.693664: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /layers/google.python.pip/pip/lib
2022-05-30 00:35:42 default[20220529t172208]  2022-05-30 00:35:42.694475: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
2022-05-30 00:35:44 default[20220529t172208]  [2022-05-30 00:35:44 +0000] [10] [INFO] Handling signal: term

There is a Tensorflow warning but it is not an error (see Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation ). The application errors and server errors in the App Engine Dashboard aren't very helpful either.

Here are the content of my files:

main.py:

from flask import Flask,render_template,request,escape,send_from_directory,send_file #send_file,send_from_directory
import youtube_dl
import lyricsgenius as lg
import os
from spleeter.separator import Separator
from dotenv import load_dotenv

api_key = os.environ.get('GENIUS_API_KEY', 'default value')
genius = lg.Genius(api_key)

app = Flask(__name__)


@app.route("/", methods=['GET'])
def index():
    yt_url = request.args.get("yt_url","")
    artist = request.args.get("artist","")
    song = request.args.get("song","")
    split_audio_tag=""

    if yt_url:
        split_audio_tag = youtube_to_split_audio(yt_url)
        print('split audio tag:',split_audio_tag)

    if artist and song:
        lyrics = getlyrics(artist,song) ###

    else:
        lyrics = ""

    return ("""<form action="" method="get">
                Artist: <input type="text" name="artist">
                Song: <input type="text" name="song">
                YouTube URL: <input type="text" name="yt_url">
                <input type="submit" value="Go">
              </form>"""+"Lyrics: "+lyrics+split_audio_tag) 


def getlyrics(artist,song):
    try:
        artist = genius.search_artist(artist, max_songs=1)
        song = artist.song(song)
        return song.lyrics
    except:
        return "invalid input"


def youtube_to_split_audio(yt_url):
    # video_url = input("please enter youtube video url:")
    video_info = youtube_dl.YoutubeDL().extract_info(
        url = yt_url,download=False
        )
    filename = f"{video_info['title']}.mp3"
    options={
        'format': 'bestaudio/best',
        # 'quality': 7,
        'keepvideo':False,
        'outtmpl':'./static/yt_mp3/'+filename,
    }

    with youtube_dl.YoutubeDL(options) as ydl:
        ydl.download([video_info['webpage_url']])

    def split_vocals(mp3):
        separator = Separator('spleeter:2stems')
        separator.separate_to_file('./static/yt_mp3/'+mp3,
                                    './static/split_audio/'+mp3)
    split_vocals(filename)

   
    filepath = './static/split_audio/'+filename+'/'+filename[:-4]+'/accompaniment.wav'
    global split_audio_tag
    split_audio_tag = '<audio controls> <source src="'+filepath+'" type="audio/wav"> </audio>'
    print('audio tag:',split_audio_tag)
    return split_audio_tag



if __name__ == "__main__":
    app.run(host="127.0.0.1", port=8080, debug=True)

requirements.txt

click==7.1.2
Flask==2.0.3
youtube_dl
lyricsgenius
numpy==1.19.2
numba==0.53.0
protobuf==3.20.1
spleeter
python-dotenv
gunicorn

app.yaml

runtime: python38
entrypoint: gunicorn -b :$PORT main:app

env_variables:
  GENIUS_API_KEY: "xxxxxxxxxxxx"

What might be causing the server error?



source https://stackoverflow.com/questions/72428269/google-app-engine-error-server-error-but-cant-find-error-in-logs

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...