Skip to main content

PDI--- Delete Object in a json file sourced from a column if conditions meet

In PDI, I am trying to compare data from a query(STG_FULFILLMENT_QTY_AGG) with data in Json array being sourced from a column json in Sales Queues table input. When the order_number and extid is same we compare the count(fullfilments.line_items) and quantity(which is the sum of fullfilments.line_items.quantity) . If the order_number and ext_if combination match along with count and sum above, we leave the json struct as it is. If not, we remove the refund. the code works fine in Visual Studio. I am new to pentaho and I think the code needs to be changed as only core js works with this tool.

In the Orders file are sample json structure, for example Order_number (66 in this case) need to calculate and compare the count of line items(6 in this case) along with the Quantity of items(7 in this case), if it doesn't match need to remove Object Refund along with its elements, else No Changes.

``````Sample File````````

[
    {
        "app_id": 111,
        "fulfillments": [{
                "id": 376,
                "quantity": 2
            },
            {
                "id": 992,
                "quantity": 1
            },
            {
                "id": 929,
                "quantity": 1
            },
            {
                "id": 768,
                "quantity": 1
            },
            {
                "id": 929,
                "quantity": 1
            },
            {
                "id": 768,
                "quantity": 1
            }],
        "line_items": [
            {
                "id": 376,
                "quantity": 2
            },
            {
                "id": 992,
                "quantity": 1
            },
            {
                "id": 929,
                "quantity": 2
            },
            {
                "id": 768,
                "quantity": 1
            },
            {
                "id": 929,
                "quantity": 1
            },
            {
                "id": 768,
                "quantity": 1
            }
        ],
        "name": "#59",
        "number": 6,
        "order_number": 66,
        "order_id": 111,
        "refunds": [
            {
                "id": 80,
                "created_at": "2000-06-17T14:31:06-04:00"
            }
        ]
    },
    {
        "app_id": 111,
        "fulfillments": [{
                "id": 376,
                "quantity": 2
            },
            {
                "id": 992,
                "quantity": 1
            },
            {
                "id": 929,
                "quantity": 1
            },
            {
                "id": 768,
                "quantity": 1
            }],
        "line_items": [
            {
                "id": 376,
                "quantity": 2
            },
            {
                "id": 992,
                "quantity": 1
            },
            {
                "id": 929,
                "quantity": 1
            },
            {
                "id": 768,
                "quantity": 1
            }
        ],
        "name": "#59",
        "number": 6,
        "order_number": 67,
        "order_id": 114,
        "refunds": [
            {
                "id": 81,
                "created_at": "2000-06-17T14:31:06-04:00"
            }
        ]
    },
    {
        "app_id": 111,
        "fulfillments": [{
                "id": 376,
                "quantity": 2
            },
            {
                "id": 768,
                "quantity": 1
            },
            {
                "id": 929,
                "quantity": 2
            },
            {
                "id": 768,
                "quantity": 2
            }],
        "line_items": [
            {
                "id": 376,
                "quantity": 2
            },
            {
                "id": 768,
                "quantity": 1
            },
            {
                "id": 929,
                "quantity": 2
            },
            {
                "id": 768,
                "quantity": 2
            }
        ],
        "name": "#59",
        "number": 6,
        "order_number": 68,
        "order_id": 113,
        "refunds": [
            {
                "id": 80,
                "created_at": "2000-06-17T14:31:06-04:00"
            }
        ]
    },
    {
        "app_id": 111,
        "fulfillments": [{
                "id": 376,
                "quantity": 2
            },
            {
                "id": 992,
                "quantity": 1
            },
            {
                "id": 929,
                "quantity": 1
            },
            {
                "id": 738,
                "quantity": 1
            },
            {
                "id": 739,
                "quantity": 3
            },
            {
                "id": 929,
                "quantity": 1
            },
            {
                "id": 768,
                "quantity": 1
            }],
        "line_items": [
            {
                "id": 376,
                "quantity": 2
            },
            {
                "id": 992,
                "quantity": 1
            },
            {
                "id": 929,
                "quantity": 1
            },
            {
                "id": 738,
                "quantity": 1
            },
            {
                "id": 739,
                "quantity": 3
            },
            {
                "id": 929,
                "quantity": 1
            },
            {
                "id": 768,
                "quantity": 1
            }
        ],
        "name": "#59",
        "number": 6,
        "order_number": 69,
        "order_id": 101,
        "refunds": [
            {
                "id": 80,
                "created_at": "2000-06-17T14:31:06-04:00"
            }
        ]
    },
    {
        "app_id": 111,
        "fulfillments": [{
                "id": 376,
                "quantity": 2
            },
            {
                "id": 768,
                "quantity": 3
            }],
        "line_items": [
            {
                "id": 376,
                "quantity": 2
            },
            {
                "id": 768,
                "quantity": 3
            }
        ],
        "name": "#59",
        "number": 6,
        "order_number": 70,
        "order_id": 119,
        "refunds": [
            {
                "id": 80,
                "created_at": "2000-06-17T14:31:06-04:00"
            }
        ]
    },
    {
        "app_id": 111,
        "fulfillments": [{
                "id": 376,
                "quantity": 2
            },
            {
                "id": 929,
                "quantity": 1
            },
            {
                "id": 768,
                "quantity": 1
            }],
        "line_items": [
            {
                "id": 376,
                "quantity": 2
            },
            {
                "id": 929,
                "quantity": 2  // two orders were placed but only one fullfilled.
            },
            {
                "id": 768,
                "quantity": 1
            }
        ],
        "name": "#59",
        "number": 6,
        "order_number": 71,
        "order_id": 117,
        "refunds": [
            {
                "id": 80,
                "created_at": "2000-06-17T14:31:06-04:00"
            }
        ]
    },
    {
        "app_id": 111,
        "fulfillments": [{
                "id": 768,
                "quantity": 1
            }],
        "line_items": [
            {
                "id": 768,
                "quantity": 1
            }
        ],
        "name": "#59",
        "number": 6,
        "order_number": 72,
        "order_id": 909,
        "refunds": [
            {
                "id": 80,
                "created_at": "2000-06-17T14:31:06-04:00"
            }
        ]
    }
]

`````````````````````````````````````````````````Code`````````````````

/**
 * orders.json file has some sample orders
 * resultset.json file has results accourding to the orders
 * After comparision, order number #68 and #70 and #72 are not matcing, hence we are revomg the refund key for those orders.
 */

const orders = require('./orders.json');

function compare(order) {
  let isMatched = false;
  let resultSet = require('./resultset.json');
  let result = resultSet.find(function (item) {
    return item.order_number === order.order_number;
  });

  
  if (
    result &&
    result.line_items_count === order.items &&
    result.quantity === order.quantity
  ) {
    isMatched = true;
  }
  return isMatched;
}

function fixOrders(orders) {
  orders.map(function (order) {
    let { order_number, line_items } = order;

    let quantity = line_items.reduce(function (quantity, line_item) {
      return (quantity += line_item.quantity);
    }, 0);

    if (!compare({ order_number, items: line_items.length, quantity })) {
      delete order.refunds;
    }
  });

  return orders;
}

let fixedOrders = fixOrders(orders);

console.log(fixedOrders);

// store in output.js
//========================================

// var fs = require('fs');
// fs.writeFile('outputFile.json', JSON.stringify(fixedOrders), (err) => {
//   if (err) console.log(err);
//   else {
//     console.log('File written successfully\n');
//  // console.log('The written has the following contents:');
//  // console.log(fs.readFileSync('outputFile.json', 'utf8'));
//   }
// });

PDI Flow

Via Active questions tagged javascript - Stack Overflow https://ift.tt/IfxcoWk

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...