Skip to main content

ANN regression problem with high loss - Python Pandas

I try to run an artificial neural network with 2 parameters in input that can give me the value of the command.

An example of the dataset in CSV file:

P1,P2,S
7.03,3.36,787.75
6.11,3.31,491.06
5.92,3.34,480.4
5.0,3.39,469.77
5.09,3.36,481.14
5.05,3.35,502.2
4.97,3.38,200.75
5.01,3.34,464.36
5.0,3.42,475.1
4.94,3.36,448.8
4.97,3.37,750.3
5.1,3.39,344.93
5.03,3.41,199.75
5.03,3.39,484.35
5.0,3.47,483.17
4.91,3.42,485.29
3.65,3.51,513.81
5.08,3.47,443.94
5.06,3.4,473.77
5.0,3.42,535.78
3.45,3.44,483.23
4.94,3.45,449.49
4.94,3.51,345.14
5.05,3.48,2829.14
5.01,3.45,1465.58
4.96,3.45,1404.53
3.35,3.58,453.09
5.09,3.47,488.02
5.12,3.52,451.12
5.15,3.54,457.48
5.07,3.53,458.07
5.11,3.5,458.69
5.11,3.47,448.13
5.01,3.42,474.44
4.92,3.44,443.44
5.08,3.53,476.89
5.01,3.49,505.67
5.01,3.47,451.82
4.95,3.49,460.96
5.14,3.42,422.13
5.14,3.42,431.44
5.03,3.46,476.09
4.95,3.53,486.88
5.03,3.42,489.81
5.07,3.45,544.39
5.01,3.52,630.21
5.16,3.49,484.47
5.03,3.52,450.83
5.12,3.48,505.6
5.13,3.54,8400.34
4.99,3.49,615.57
5.13,3.46,673.72,
5.19,3.52,522.31
5.11,3.52,417.29
5.15,3.49,454.97
4.96,3.55,3224.72
5.12,3.54,418.85
5.06,3.53,489.87
5.05,3.45,433.04,
5.0,3.46,491.56
12.93,3.48,3280.98
5.66,3.5,428.5
4.98,3.59,586.43
4.96,3.51,427.67
5.06,3.54,508.53
4.88,3.49,1040.43
5.11,3.52,467.79
5.18,3.54,512.79
5.11,3.52,560.05
5.08,3.53,913.69
5.12,3.53,521.1
5.15,3.52,419.24
5.12,3.56,527.72
5.03,3.52,478.1
5.1,3.55,450.32
5.08,3.53,451.12
4.89,3.53,514.78
4.92,3.46,469.23
5.03,3.53,507.8
4.96,3.56,2580.22
4.99,3.52,516.24
5.0,3.55,525.96
3.66,3.61,450.69
4.91,3.53,487.98
4.97,3.54,443.86
3.53,3.57,628.8
5.02,3.51,466.91
6.41,3.46,430.19
5.0,3.58,589.98
5.06,3.55,711.22
5.26,3.55,2167.16
6.59,3.53,380.59
6.12,3.47,723.56
6.08,3.47,404.59
6.09,3.49,509.5
5.75,3.52,560.21
5.11,3.58,414.83
5.56,3.17,411.22
6.66,3.26,219.38
5.52,3.2,422.13
7.91,3.22,464.87
7.14,3.2,594.18
6.9,3.21,491.0
6.98,3.28,642.09
6.39,3.22,394.49
5.82,3.19,616.82
5.71,3.13,479.6
5.31,3.1,430.6
6.19,3.34,435.42
4.88,3.42,518.14
4.88,3.36,370.93
4.88,3.4,193.36
5.11,3.47,430.06
4.77,3.46,379.38
5.34,3.39,465.39
6.27,3.29,413.8
6.22,3.19,633.28
5.22,3.45,444.14
4.08,3.42,499.91
3.57,3.48,534.41
4.1,3.48,373.8
4.13,3.49,443.57
4.07,3.48,463.74
4.13,3.46,419.92
4.21,3.44,457.76
4.13,3.41,339.31
4.23,3.51,893.39
4.11,3.45,392.54
4.99,3.44,472.96
4.96,3.45,192.54
5.0,3.48,191.22
5.25,3.43,425.64
5.11,3.41,191.12
5.06,3.44,422.32
5.08,3.44,973.29
5.23,3.43,400.67
5.15,3.44,404.2
6.23,3.46,383.07
6.07,3.37,484.3
6.17,3.44,549.94
4.7,3.45,373.43
5.56,3.41,379.33
5.12,3.45,357.51
5.87,3.42,349.89
5.49,3.44,374.4
5.14,3.44,361.11
6.09,3.46,521.23
5.68,3.5,392.98
5.04,3.44,406.9
5.07,3.42,360.8
5.14,3.38,406.48
4.14,3.56,362.45
4.09,3.48,421.83
4.1,3.48,473.64
4.04,3.53,378.35
4.16,3.47,424.59
4.07,3.47,366.27
3.53,3.59,484.37
4.07,3.51,417.12
4.21,3.49,2521.87
4.15,3.5,458.69
4.08,3.52,402.48
4.2,3.47,373.26
3.69,3.5,486.62
4.24,3.51,402.12
4.19,3.5,414.79
4.13,3.55,390.08
4.2,3.5,452.96
4.06,3.52,524.97
4.22,3.47,442.46
4.07,3.5,403.13
4.07,3.51,404.54
4.17,3.46,393.33
4.1,3.4,430.81
4.05,3.41,365.2
4.11,3.47,412.8
4.13,3.49,431.14
4.03,3.51,417.5
3.9,3.48,386.62
4.16,3.49,351.71
5.18,3.48,351.43
4.49,3.5,336.33
3.7,3.51,551.8
6.39,3.44,369.79
6.74,3.35,408.57
6.0,3.38,2924.54
6.61,3.36,449.27
4.91,3.42,361.8
5.81,3.43,470.62
5.8,3.48,389.52
4.81,3.45,403.57
5.75,3.43,570.8
5.68,3.42,405.9
5.9,3.4,458.53
6.51,3.45,374.3
6.63,3.38,406.68
6.85,3.35,382.9
6.8,3.46,398.47
4.81,3.47,398.39
8.3,3.48,538.2

The code :

import pandas as pd
import matplotlib.pyplot as plt

plt.style.use('ggplot')

concatenation = pd.read_csv('concatenation.csv')

X = concatenation.iloc[:, :2].values # 2 columns
y = concatenation.iloc[:, 2].values # 1 column

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 0)


from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense

model = Sequential()
model.add(Dense(units=128, activation='relu'))
model.add(Dense(units=64, activation='relu'))
model.add(Dense(units=1, activation='linear'))

model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(X_train, y_train, epochs= 1000)

But I have a problem during the training, I have high loss, I can not understand why?

Epoch 1/1000
10/10 [==============================] - 1s 22ms/step - loss: 407736.7188 - mae: 431.3878 - val_loss: 269746.6875 - val_mae: 380.4598
Epoch 2/1000
10/10 [==============================] - 0s 7ms/step - loss: 407391.1875 - mae: 431.0146 - val_loss: 269452.0625 - val_mae: 380.0934
Epoch 3/1000
10/10 [==============================] - 0s 8ms/step - loss: 407016.3750 - mae: 430.5912 - val_loss: 269062.3125 - val_mae: 379.6077
Epoch 4/1000
10/10 [==============================] - 0s 7ms/step - loss: 406472.7188 - mae: 430.0183 - val_loss: 268508.0312 - val_mae: 378.9190
Epoch 5/1000
10/10 [==============================] - 0s 9ms/step - loss: 405686.1562 - mae: 429.1566 - val_loss: 267709.7812 - val_mae: 377.9213
...

I checked that I didn't have a null value, I standardized my X_train I didn't touch the outputs and I am well in case of regression with the right optimizer and the right loss function... so I can't understand why



source https://stackoverflow.com/questions/73393919/ann-regression-problem-with-high-loss-python-pandas

Comments

Popular posts from this blog

How to show number of registered users in Laravel based on usertype?

i'm trying to display data from the database in the admin dashboard i used this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count(); echo $users; ?> and i have successfully get the correct data from the database but what if i want to display a specific data for example in this user table there is "usertype" that specify if the user is normal user or admin i want to user the same code above but to display a specific usertype i tried this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count()->WHERE usertype =admin; echo $users; ?> but it didn't work, what am i doing wrong? source https://stackoverflow.com/questions/68199726/how-to-show-number-of-registered-users-in-laravel-based-on-usertype

Why is my reports service not connecting?

I am trying to pull some data from a Postgres database using Node.js and node-postures but I can't figure out why my service isn't connecting. my routes/index.js file: const express = require('express'); const router = express.Router(); const ordersCountController = require('../controllers/ordersCountController'); const ordersController = require('../controllers/ordersController'); const weeklyReportsController = require('../controllers/weeklyReportsController'); router.get('/orders_count', ordersCountController); router.get('/orders', ordersController); router.get('/weekly_reports', weeklyReportsController); module.exports = router; My controllers/weeklyReportsController.js file: const weeklyReportsService = require('../services/weeklyReportsService'); const weeklyReportsController = async (req, res) => { try { const data = await weeklyReportsService; res.json({data}) console...

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...