Skip to main content

Scrapy: setting authorization header for proxy in middleware

I am trying to send scrapy requests through a proxy that requires an authorization. I updated the process_request method from the default middleware (middleware.py).

I tried several ways to achieve it but everytime I get the following error messsage : ERROR: Gave up retrying <GET https://api.ipify.org/> (failed 3 times): Could not open CONNECT tunnel with proxy proxy_ip:proxy_port [{'status': 407, 'reason': b'Proxy Authentication Required'}]

Here is what I tried :

def process_request(self, request, spider):           
    request.meta['proxy'] = 'http://proxy_ip:proxy_port'
    proxy_user_pass = "username:password"
    encoded_user_pass = base64.encodestring(proxy_user_pass.encode()).decode()
    request.headers['Proxy-Authorization'] = 'Basic ' + encoded_user_pass
    return None

I try other ways of encoding the header, such as :

From : https://www.zyte.com/blog/scrapy-proxy/

request.headers['Proxy-Authorization'] = basic_auth_header("username", "password")

From: https://github.com/aivarsk/scrapy-proxies/blob/master/scrapy_proxies/randomproxy.py

encoded_user_pass = base64.b64encode(proxy_user_pass.encode()).decode()

From : Scrapy cookies not working when sending Proxy-Authorization header

request.headers['Proxy-Authorization'] = 'Basic ' + encoded_user_pass.strip()

The username / password have been tested and work properly If I whitelist my current ip (no authorization required) I can send a request using only request.meta['proxy'] = 'http://proxy_ip:proxy_port'. Though this is not a solution as I do not control the ip from which the request is sent.

Any idea what goes wrong with my request?



source https://stackoverflow.com/questions/73561410/scrapy-setting-authorization-header-for-proxy-in-middleware

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...