Skip to main content

Review RSI function - Python

does this RSI code looks correct for you? RSI I'm getting with this code are very often touching oscillator peaks (0 or 100) when comparing to RSIs on different market data apps (TradingView etc.) they hardly ever do that.

Does this formula looks correct? I found it in quite old book Technical Traders Guide to Computer Analysis of the Futures Market. Also it returns almost identical results as RSI=100-(100-RS) where RS=AVG GAIN/AVG LOSS. But still I'm a bit mad that results are different comparing to RSIs available on the web...

# 
# Formula used:
#
# RSI(n) = 100 * (avg_up(n) / (avg_up(n)+avg_down(n)))
#
# Where:
#
# avg_up = average percentage gain from n-periods
# avg_down = average percentage loss from n-periods
# n = number of periods to calculate averages
#

def calculate_percentage_gains_and_losses(prices):
    
    percentage = {"gains":[0.0],
                  "losses":[0.0]}

    for i in range(len(prices)-1):
        
        diff=((float(prices[i + 1]) / float(prices[i]))*100)-100
        
        if diff>=0:
            percentage["gains"].append(diff)
            percentage["losses"].append(0.0)
        else:
            percentage["losses"].append(abs(diff))
            percentage["gains"].append(0.0)

    return percentage

def calculate_avg_percentage_gains_and_losses(prices, gains, losses, periods):

    avg_percentage = {"gains":[ 0.0 for x in range(periods - 1)], 
                      "losses":[ 0.0 for x in range(periods - 1)]}

    for i in range(periods,len(prices)+1):
            avg_percentage["gains"].append(sum(gains[i - periods:i]) / periods)
            avg_percentage["losses"].append(sum(losses[i - periods:i]) / periods)

    return avg_percentage

def calculate_relative_strength_index(prices, periods):

    percentage = calculate_percentage_gains_and_losses(prices)
    avg_percentage = calculate_avg_percentage_gains_and_losses(prices, percentage["gains"], percentage["losses"], periods)
    rsi_list=[0.0 for x in range(periods - 1)]

    for i in range(periods - 1, len(prices)):
        rsi = 100 * round((avg_percentage["gains"][i] / (avg_percentage["gains"][i] + avg_percentage["losses"][i])), 2)
        rsi_list.append(rsi)

    return rsi_list

EDIT Here is the code after adjustment

def calculate_percentage_gains_and_losses(prices):
    
    percentage = {"gains":[0.0],
                  "losses":[0.0]}

    for i in range(len(prices)-1):
        
        diff=((float(prices[i + 1]) / float(prices[i]))*100)-100
        
        if diff>=0:
            percentage["gains"].append(diff)
            percentage["losses"].append(0.0)
        else:
            percentage["losses"].append(abs(diff))
            percentage["gains"].append(0.0)

    return percentage

def calculate_smoothed_avg_percentage_gains_and_losses(prices, gains, losses, periods):

    avg_percentage = {"gains":[ 0.0 if i<(periods-1) else sum(gains[:periods]) / periods for i in range(periods)], 
                      "losses":[ 0.0 if i<(periods-1) else sum(losses[:periods]) / periods for i in range(periods)]}

    for i in range(periods, len(prices)):
        avg_percentage["gains"].append((gains[i] + (avg_percentage["gains"][i-1]* (periods-1))) / periods)
        avg_percentage["losses"].append((losses[i] + (avg_percentage["losses"][i-1]* (periods-1))) / periods)

    return avg_percentage

def calculate_relative_strength_index(prices, periods):

    percentage = calculate_percentage_gains_and_losses(prices)
    avg_percentage = calculate_smoothed_avg_percentage_gains_and_losses(prices, percentage["gains"], percentage["losses"], periods)
    rsi=[ 0.0 if i < (periods-1) else round((100 * (avg_percentage["gains"][i] / (avg_percentage["gains"][i] + avg_percentage["losses"][i]))),2) for i in range(len(prices))]

    return rsi


source https://stackoverflow.com/questions/74791649/review-rsi-function-python

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...