Skip to main content

Javascript svg circular gradiant

I have a problem to solve. I want to draw a circle svg with gradient fonts based on a score. The score varies from 0 to 100. If the score is 60% for example, I have to draw 60% of the circle knowing that the gradient changes every 20%. I would like to do something like the following image but with gradients:

enter image description here

I saw the example below which could be useful to me, but I don't understand how the coordinates of the M in path are calculated:

<svg width="300" height="300">
    <linearGradient id="linearColors1" x1="0" y1="0" x2="1" y2="1">
       <stop offset="0%" stop-color="#01E400"></stop>
       <stop offset="100%" stop-color="#FEFF01"></stop>
    </linearGradient>
    <linearGradient id="linearColors2" x1="0.5" y1="0" x2="0.5" y2="1">
       <stop offset="0%" stop-color="#FEFF01"></stop>
       <stop offset="100%" stop-color="#FF7E00"></stop>
    </linearGradient>
    <linearGradient id="linearColors3" x1="1" y1="0" x2="0" y2="1">
       <stop offset="0%" stop-color="#FF7E00"></stop>
       <stop offset="100%" stop-color="#FB0300"></stop>
    </linearGradient>
    <linearGradient id="linearColors4" x1="1" y1="1" x2="0" y2="0">
       <stop offset="0%" stop-color="#FB0300"></stop>
       <stop offset="100%" stop-color="#9B004A"></stop>
    </linearGradient>
    <linearGradient id="linearColors5" x1="0.5" y1="1" x2="0.5" y2="0">
       <stop offset="0%" stop-color="#9B004A"></stop>
       <stop offset="100%" stop-color="#7D0022"></stop>
    </linearGradient>
    <linearGradient id="linearColors6" x1="0" y1="1" x2="1" y2="0">
       <stop offset="0%" stop-color="#7D0022"></stop>
       <stop offset="100%" stop-color="#01E400"></stop>
    </linearGradient>
    <path d="M150 10 a120 120 0 0 1 103.9230 60"
        fill="none" stroke="url(#linearColors1)" stroke-width="5" />
  <path d="M253.9230 70 a120 120 0 0 1 0 120"
        fill="none" stroke="url(#linearColors2)" stroke-width="5" />
  <path d="M253.9230 190 a120 120 0 0 1 -103.9230 60"
        fill="none" stroke="url(#linearColors3)" stroke-width="5" />
  <path d="M150 250 a120 120 0 0 1 -103.9230 -60"
        fill="none" stroke="url(#linearColors4)" stroke-width="5" />
  <path d="M46.077 190 a120 120 0 0 1 0 -120"
        fill="none" stroke="url(#linearColors5)" stroke-width="5" />
  <path d="M46.077 70 a120 120 0 0 1 103.9230 -60"
        fill="none" stroke="url(#linearColors6)" stroke-width="5" />
</svg>

Can you help me solve this problem or explain to me the calculation logic of the M in the example above?

Thanks very much !

Via Active questions tagged javascript - Stack Overflow https://ift.tt/hUu0LYs

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...