Skip to main content

Error on Seaborn lmplot when passing dataframe data due to dtype('O') error, except I've replaced all object dtypes [duplicate]

Background

I have a dataframe imported from an excel doc. Each column is an experiment variable and every row is an entry. The dataframe is 242x18.

I am attempting to plot 1x3 lmplot, plotting two Float64 dtypes against one another. Data shown below for context: Data in question dtypes of data

Here are the dtypes of the full dataframe: dtypes of full dataframe

Note that it was read in as: dtypes of full dataframe prior to conversion

Where I then used:

df = df_forging.convert_dtypes()

The Error

The function I'm using is exactly:

g = sns.lmplot(data = df,y='Peak Tensile Force (N)',x='Elliptical Area (mm^2)') 

Which returns the following:


---------------------------------------------------------------------------

UFuncTypeError                            Traceback (most recent call last)
>! \~\\AppData\\Local\\Temp\\ipykernel_27312\\4132946937.py in \<module\>
1 # Isolate to one weld population
2 g = sns.lmplot(data=df_forging,
3                y='Peak Tensile Force (N)',
4                x='Elliptical Area (mm^2)'
5                # hue='Weld Population',

C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\regression.py in lmplot(data, x, y, hue, col, row, palette, col_wrap, height, aspect, markers, sharex, sharey, hue_order, col_order, row_order, legend, legend_out, x_estimator, x_bins, x_ci, scatter, fit_reg, ci, n_boot, units, seed, order, logistic, lowess, robust, logx, x_partial, y_partial, truncate, x_jitter, y_jitter, scatter_kws, line_kws, facet_kws)
633         scatter_kws=scatter_kws, line_kws=line_kws,
634     )
635     facets.map_dataframe(regplot, x=x, y=y, \*\*regplot_kws)
636     facets.set_axis_labels(x, y)
637

C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\axisgrid.py in map_dataframe(self, func, \*args, \*\*kwargs)
817
818             # Draw the plot
819             self.\_facet_plot(func, ax, args, kwargs)
820
821         # For axis labels, prefer to use positional args for backcompat

C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\axisgrid.py in \_facet_plot(self, func, ax, plot_args, plot_kwargs)
846             plot_args = \[\]
847             plot_kwargs\["ax"\] = ax
848         func(\*plot_args, \*\*plot_kwargs)
849
850         # Sort out the supporting information

C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\regression.py in regplot(data, x, y, x_estimator, x_bins, x_ci, scatter, fit_reg, ci, n_boot, units, seed, order, logistic, lowess, robust, logx, x_partial, y_partial, truncate, dropna, x_jitter, y_jitter, label, color, marker, scatter_kws, line_kws, ax)
757     scatter_kws\["marker"\] = marker
758     line_kws = {} if line_kws is None else copy.copy(line_kws)
759     plotter.plot(ax, scatter_kws, line_kws)
760     return ax
761

C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\regression.py in plot(self, ax, scatter_kws, line_kws)
366
367         if self.fit_reg:
368             self.lineplot(ax, line_kws)
369
370         # Label the axes

C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\regression.py in lineplot(self, ax, kws)
411         """Draw the model."""
412         # Fit the regression model
413         grid, yhat, err_bands = self.fit_regression(ax)
414         edges = grid\[0\], grid\[-1\]
415

C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\regression.py in fit_regression(self, ax, x_range, grid)
217             yhat, yhat_boots = self.fit_logx(grid)
218         else:
219             yhat, yhat_boots = self.fit_fast(grid)
220
221         # Compute the confidence interval at each grid point

C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\regression.py in fit_fast(self, grid)
234         X, y = np.c\_\[np.ones(len(self.x)), self.x\], self.y
235         grid = np.c\_\[np.ones(len(grid)), grid\]
236         yhat = grid.dot(reg_func(X, y))
237         if self.ci is None:
238             return yhat, None

C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\regression.py in reg_func(\_x, \_y)
230         """Low-level regression and prediction using linear algebra."""
231         def reg_func(\_x, \_y):
232             return np.linalg.pinv(\_x).dot(_y)
233
234         X, y = np.c_\[np.ones(len(self.x)), self.x\], self.y

C:\\ProgramData\\Anaconda3\\lib\\site-packages\\numpy\\core\\overrides.py in pinv(\*args, \*\*kwargs)

C:\\ProgramData\\Anaconda3\\lib\\site-packages\\numpy\\linalg\\linalg.py in pinv(a, rcond, hermitian)
1996         return wrap(res)
1997     a = a.conjugate()
1998     u, s, vt = svd(a, full_matrices=False, hermitian=hermitian)
1999
2000     # discard small singular values

C:\\ProgramData\\Anaconda3\\lib\\site-packages\\numpy\\core\\overrides.py in svd(\*args, \*\*kwargs)

C:\\ProgramData\\Anaconda3\\lib\\site-packages\\numpy\\linalg\\linalg.py in svd(a, full_matrices, compute_uv, hermitian)
1655
1656         signature = 'D-\>DdD' if isComplexType(t) else 'd-\>ddd'
1657         u, s, vh = gufunc(a, signature=signature, extobj=extobj)
1658         u = u.astype(result_t, copy=False)
1659         s = s.astype(\_realType(result_t), copy=False)

UFuncTypeError: Cannot cast ufunc 'svd_n_s' input from dtype('O') to dtype('float64') with casting rule 'same_kind'

What I've tried

As mentioned above, I fixed all the dtypes to better fit the contained data. I have used the same dataset with seaborn.scatterplot, which worked without error.

I think the issue is that it think it's seeing an dtype('O'), but I don't see how that can be.



source https://stackoverflow.com/questions/75546110/error-on-seaborn-lmplot-when-passing-dataframe-data-due-to-dtypeo-error-exc

Comments

Popular posts from this blog

How to show number of registered users in Laravel based on usertype?

i'm trying to display data from the database in the admin dashboard i used this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count(); echo $users; ?> and i have successfully get the correct data from the database but what if i want to display a specific data for example in this user table there is "usertype" that specify if the user is normal user or admin i want to user the same code above but to display a specific usertype i tried this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count()->WHERE usertype =admin; echo $users; ?> but it didn't work, what am i doing wrong? source https://stackoverflow.com/questions/68199726/how-to-show-number-of-registered-users-in-laravel-based-on-usertype

Why is my reports service not connecting?

I am trying to pull some data from a Postgres database using Node.js and node-postures but I can't figure out why my service isn't connecting. my routes/index.js file: const express = require('express'); const router = express.Router(); const ordersCountController = require('../controllers/ordersCountController'); const ordersController = require('../controllers/ordersController'); const weeklyReportsController = require('../controllers/weeklyReportsController'); router.get('/orders_count', ordersCountController); router.get('/orders', ordersController); router.get('/weekly_reports', weeklyReportsController); module.exports = router; My controllers/weeklyReportsController.js file: const weeklyReportsService = require('../services/weeklyReportsService'); const weeklyReportsController = async (req, res) => { try { const data = await weeklyReportsService; res.json({data}) console...

How to split a rinex file if I need 24 hours data

Trying to divide rinex file using the command gfzrnx but getting this error. While doing that getting this error msg 'gfzrnx' is not recognized as an internal or external command Trying to split rinex file using the command gfzrnx. also install'gfzrnx'. my doubt is I need to run this program in 'gfzrnx' or in 'cmdprompt'. I am expecting a rinex file with 24 hrs or 1 day data.I Have 48 hrs data in RINEX format. Please help me to solve this issue. source https://stackoverflow.com/questions/75385367/how-to-split-a-rinex-file-if-i-need-24-hours-data