Skip to main content

Tensorflow.data.Dataset.rejection_resample modifies my dataset's element_spec

I am trying to use tf.data.Dataset.rejection_resample to balance my dataset, but I am running into an issue in which the method modifies the element_spec of my dataset, making it incompatible with my models.

The original element spec of my dataset is:

({'input_A': TensorSpec(shape=(None, 900, 1), dtype=tf.float64, name=None),
  'input_B': TensorSpec(shape=(None, 900, 1), dtype=tf.float64, name=None)},
 TensorSpec(shape=(None, 1, 1), dtype=tf.int64, name=None))

This is the element spec after batching.

However, if I run rejection_resample (before batching), the element spec at the end becomes:

(TensorSpec(shape=(None,), dtype=tf.int64, name=None),
 ({'input_A': TensorSpec(shape=(None, 900, 1), dtype=tf.float64, name=None),
   'input_B': TensorSpec(shape=(None, 900, 1), dtype=tf.float64, name=None)},
  TensorSpec(shape=(None, 1, 1), dtype=tf.int64, name=None)))

So rejection_resample is adding another tf.int64 tensor in the beginning of my data, which I can't find out what is it for. My problem is that this breaks compatibility between the input data and my model, since it depends on the original input tuple.

Furthermore, it also causes an inconsistency between the training and validation data. I was expecting to apply rejection_resample only on training data, but if I do that, the training dataset will have the added tensor, while the validation one won't.

So my question is what is this added tensor to the element spec, and if there is any way to drop an element from the dataset after building it. Thank you.



source https://stackoverflow.com/questions/75356723/tensorflow-data-dataset-rejection-resample-modifies-my-datasets-element-spec

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...