Skip to main content

FID and custom feature extractor

I would like to use a custom feature extractor to calculate FID

according to https://lightning.ai/docs/torchmetrics/stable/image/frechet_inception_distance.html I can use nn.Module for feature

What is wrong with the following code?



import torch
_ = torch.manual_seed(123)
from torchmetrics.image.fid import FrechetInceptionDistance
from torchvision.models import inception_v3


net = inception_v3()
checkpoint = torch.load('checkpoint.pt')
net.load_state_dict(checkpoint['state_dict'])
net.eval()

fid = FrechetInceptionDistance(feature=net)
# generate two slightly overlapping image intensity distributions
imgs_dist1 = torch.randint(0, 200, (100, 3, 299, 299), dtype=torch.uint8)
imgs_dist2 = torch.randint(100, 255, (100, 3, 299, 299), dtype=torch.uint8)
fid.update(imgs_dist1, real=True)
fid.update(imgs_dist2, real=False)
result = fid.compute()

print(result)

Traceback (most recent call last):
  File "foo.py", line 12, in <module>
    fid = FrechetInceptionDistance(feature=net)
          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Lib/site-packages/torchmetrics/image/fid.py", line 304, in __init__
    num_features = self.inception(dummy_image).shape[-1]
                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Lib/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Lib/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Lib/site-packages/torchvision/models/inception.py", line 166, in forward
    x, aux = self._forward(x)
             ^^^^^^^^^^^^^^^^
  File "/Lib/site-packages/torchvision/models/inception.py", line 105, in _forward
    x = self.Conv2d_1a_3x3(x)
        ^^^^^^^^^^^^^^^^^^^^^
  File "/Lib/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Lib/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Lib/site-packages/torchvision/models/inception.py", line 405, in forward
    x = self.conv(x)
        ^^^^^^^^^^^^
  File "/Lib/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Lib/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Lib/site-packages/torch/nn/modules/conv.py", line 460, in forward
    return self._conv_forward(input, self.weight, self.bias)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Lib/site-packages/torch/nn/modules/conv.py", line 456, in _conv_forward
    return F.conv2d(input, weight, bias, self.stride,
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: expected scalar type Byte but found Float

Process finished with exit code 1



source https://stackoverflow.com/questions/77675693/fid-and-custom-feature-extractor

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...