Skip to main content

Wp All Import Function Editor

I'm trying to import a csv file with wp all import set specific functions to set the sale price and the offer price. Now I would need to call the function that forms the regular price, inside the function of the offer price, to work on the result and maybe apply a percentage discount.

<?php

$GLOBALS['$commissione_paypal_lm'] = 4;
$GLOBALS['$spese_spedizione_moto_lm'] = 10;
$GLOBALS['$spese_spedizione_autocarro_lm'] = 10;
$GLOBALS['$spese_spedizione_varie_lm'] = 7;
$GLOBALS['$pfu_moto_lm'] = 1.50;
$GLOBALS['$pfu_autocarro_lm'] = 4.90;
$GLOBALS['$pfu_varie_lm'] = 2.90;
// First function for regular price,i take variables from csv and global variables
function prezzo_finale( $price = null, $pfu = null, $diametro = null ) {
    if ( !empty( $price ) ) {
        // strip any extra characters from price
        $price = preg_replace("/[^0-9,.]/", "", $price);
        $pfu = preg_replace("/[^0-9,.]/", "", $pfu);
        
        //price ommas and dots fix
        $price = str_replace(",",".",str_replace(".","",$price));
        $pfu = str_replace(",",".",str_replace(".","",$pfu));
        
        // calculate percentage
        $percent = 0;
        if ($diametro != '') {
            $term = term_exists( $diametro, 'pa_diametro', 0 ); 
            if ( $term !== 0 && $term !== null ) { 
                $percent = get_field('percentage', 'pa_diametro_' . $term["term_id"]);
            }
        }
        
        // final price
        $prezzo_finale = $price;
        if (empty( $percent ) ) {
            // Se il campo percentuale ĆØ vuoto metto 20% automatico
            $prezzo_appoggio_finale = round((($prezzo_finale + round($prezzo_finale * (20 / 100), 2) + $pfu ) * $GLOBALS['$commissione_paypal_lm'])/100,2) ;
            $prezzo_finale = ($prezzo_finale + round($prezzo_finale * (20 / 100), 2) + $pfu + $prezzo_appoggio_finale);
        }else if ($percent > 0){
            $prezzo_appoggio_finale = round((($prezzo_finale + round($prezzo_finale * ($percent / 100), 2) + $pfu ) * $GLOBALS['$commissione_paypal_lm'])/100,2) ;
            $prezzo_finale = ($prezzo_finale + round($prezzo_finale * ($percent / 100), 2) + $pfu + $prezzo_appoggio_finale);
        }else{
            // Se il campo percentuale ĆØ inferiore uguale a zero metto 20% automatico
            $prezzo_appoggio_finale = round((($prezzo_finale + round($prezzo_finale * (20 / 100), 2) + $pfu ) * $GLOBALS['$commissione_paypal_lm'])/100,2) ;
            $prezzo_finale = ($prezzo_finale + round($prezzo_finale * (20 / 100), 2) + $pfu + $prezzo_appoggio_finale);
        }

        // perform calculations
        return $prezzo_finale; 
    }
}
function prezzo_finale_lm( $fifo_ponderato = null, $diametro = null, $settori_codice= null ) {
    if ( !empty( $fifo_ponderato ) ) {
        // strip any extra characters from price
        $fifo_ponderato = preg_replace("/[^0-9,.]/", "", $fifo_ponderato);
        
        //price ommas and dots fix
        $fifo_ponderato = str_replace(",",".",str_replace(".","",$fifo_ponderato));
        
        // calculate percentage
        $percent = 0;
        if ($diametro != '') {
            $term = term_exists( $diametro, 'pa_diametro', 0 ); 
            if ( $term !== 0 && $term !== null ) { 
                $percent = get_field('percentage', 'pa_diametro_' . $term["term_id"]);
            }
        }
        
        // final price
        // moto = 10; vettura 8; isole extra valutare; paypal 3%;
        $prezzo_finale_lm = ($fifo_ponderato);
        if ($settori_codice === 'MOTO' || $settori_codice === 'SCOOTER' || $settori_codice === 'CICLOMOTORI'){
        $spese_spedizione = $GLOBALS['$spese_spedizione_moto_lm'];
        $pfu = $GLOBALS['$pfu_moto_lm'];
        }else if ($settori_codice === 'AUTOCARRO'){
        $spese_spedizione = $GLOBALS['$spese_spedizione_autocarro_lm'];
        $pfu = $GLOBALS['$pfu_autocarro_lm'];
        }else{
        $spese_spedizione = $GLOBALS['$spese_spedizione_varie_lm'];
        $pfu = $GLOBALS['$pfu_varie_lm'];
        }       
        if (empty( $percent ) ) {
            // Se il campo percentuale ĆØ vuoto metto 20% automatico
            $prezzo_appoggio_lm = round((($prezzo_finale_lm + round($prezzo_finale_lm * (20 / 100), 2) + $pfu + $spese_spedizione) * $GLOBALS['$commissione_paypal_lm'])/100,2) ;
            $prezzo_finale_lm_paypal = ($prezzo_finale_lm + round($prezzo_finale_lm * (20 / 100), 2) + $pfu + $spese_spedizione + $prezzo_appoggio_lm);
        }else if ($percent > 0){            
            $prezzo_appoggio_lm = round((($prezzo_finale_lm + round($prezzo_finale_lm * ($percent / 100), 2) + $pfu + $spese_spedizione) * $GLOBALS['$commissione_paypal_lm'])/100,2) ;
            $prezzo_finale_lm_paypal = ($prezzo_finale_lm + round($prezzo_finale_lm * ($percent / 100), 2) + $pfu + $spese_spedizione + $prezzo_appoggio_lm);
        }else{
            // Se il campo percentuale ĆØ inferiore uguale a zero metto 20% automatico
            $prezzo_appoggio_lm = round((($prezzo_finale_lm + round($prezzo_finale_lm * (20 / 100), 2) + $pfu + $spese_spedizione) * $GLOBALS['$commissione_paypal_lm'])/100,2) ;
            $prezzo_finale_lm_paypal = ($prezzo_finale_lm + round($prezzo_finale_lm * (20 / 100), 2) + $pfu + $spese_spedizione + $prezzo_appoggio_lm);
        }

        // perform calculations
        return $prezzo_finale_lm_paypal; 
                
    }
}
    // Second function for offer price,i would take regular price and work with
function prezzo_offerta_lm() {

        if (prezzo_finale_lm()){
        return prezzo_finale_lm();
        // and for example apply discount as global variable
        }else{
        
        }

        // perform calculations
        
}
?>

This is shortcode i use for regular price:

[prezzo_finale_lm({fifo_ponderato[1]},{diametro[1]},{settori_codice[1]})]

Thank you all for any advice.



source https://stackoverflow.com/questions/69003644/wp-all-import-function-editor

Comments

Popular posts from this blog

How to show number of registered users in Laravel based on usertype?

i'm trying to display data from the database in the admin dashboard i used this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count(); echo $users; ?> and i have successfully get the correct data from the database but what if i want to display a specific data for example in this user table there is "usertype" that specify if the user is normal user or admin i want to user the same code above but to display a specific usertype i tried this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count()->WHERE usertype =admin; echo $users; ?> but it didn't work, what am i doing wrong? source https://stackoverflow.com/questions/68199726/how-to-show-number-of-registered-users-in-laravel-based-on-usertype

Why is my reports service not connecting?

I am trying to pull some data from a Postgres database using Node.js and node-postures but I can't figure out why my service isn't connecting. my routes/index.js file: const express = require('express'); const router = express.Router(); const ordersCountController = require('../controllers/ordersCountController'); const ordersController = require('../controllers/ordersController'); const weeklyReportsController = require('../controllers/weeklyReportsController'); router.get('/orders_count', ordersCountController); router.get('/orders', ordersController); router.get('/weekly_reports', weeklyReportsController); module.exports = router; My controllers/weeklyReportsController.js file: const weeklyReportsService = require('../services/weeklyReportsService'); const weeklyReportsController = async (req, res) => { try { const data = await weeklyReportsService; res.json({data}) console...

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...