Skip to main content

Deleting the leaf node in a binary tree

I am implementing a BST and everything works, even the deletion with two children.The only bug is in the deletion of a leaf which seems such a trivial task. There seem to be still a reference to the leaf node but I can’t get on top of this issue.Putting node = None doesn’t remove the entire Node.I have also tried del node without any luck.If you could spot the problem it would be nice.

import random


class Node:

    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
        self.parent = None
        self.left_child = None
        self.right_child = None
        self.level = None

class Tree:

    def __init__(self):
        self.root = None
        self.size = 0
        self.height = 0

    def _insertion(self, root, data):
        new_node = Node(data)
        if root.data < data:
            if root.right:
                return self._insertion(root.right, data)
            root.right = new_node
            root.right.parent = root
            root.right_child = root.right
            return
        if root.data > data:
            if root.left:
                return self._insertion(root.left, data)
            root.left = new_node
            root.left.parent = root
            root.left_child = root.left
            return

    def insertion(self, data):
        new_node = Node(data)
        if not self.root:
            self.root = new_node
            return
        return self._insertion(self.root, data)

    def _get_height(self, root):
        if not root:
            return -1
        left_height = self._get_height(root.left)
        right_height = self._get_height(root.right)
        return 1 + max(left_height, right_height)

    def get_height(self):
        if not self.root:
            return 0
        return self._get_height(self.root)

    def fill_random(self, num_nodes):
        for i in range(num_nodes):
            random_num = int(random.random()*100)
            self.insertion(random_num)

    def _inorder(self, root):
        if root:
            self._inorder(root.left)
            print(root.data)
            self._inorder(root.right)

    def inorder(self):
        root = self.root
        return self._inorder(root)

    def get_max(self, node):
        while node.right:
            node = node.right
        return node.data

    def search(self, data):
        root = self.root
        while root.right or root.left:
            if root.data < data:
                root = root.right
            if root.data > data:
                root = root.right
            if root.data == data:
                return root
        return None

    def _delete_node(self, root, data):
        if root:
            if root.data < data:
                return self._delete_node(root.right, data)
            if root.data > data:
                return self._delete_node(root.left, data)
            if root.data == data:
                if not root.left and not root.right:
                    root = None
                    return
                if not root.left and root.right:
                    root = root.right
                    root.right = None
                    return
                if not root.right and root.left:
                    root = root.left
                    root.left = None
                    return
                if root.right and root.left:
                    value = self.get_max(root)
                    print(f"This is the value: {value}")
                    root.data = value
                    self._delete_node(root.right, value)

    def delete_node(self, data):
        if not self.root:
            return None
        return self._delete_node(self.root, data)

if __name__ == '__main__':
    my_tree = Tree()
    my_tree.insertion(33)
    my_tree.insertion(36)
    my_tree.insertion(25)
    my_tree.insertion(20)
    my_tree.insertion(27)
    my_tree.insertion(35)
    my_tree.insertion(39)
    my_tree.delete_node(33)
    my_tree.inorder()
    my_tree.search(35)




source https://stackoverflow.com/questions/69781406/deleting-the-leaf-node-in-a-binary-tree

Comments

Popular posts from this blog

How to show number of registered users in Laravel based on usertype?

i'm trying to display data from the database in the admin dashboard i used this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count(); echo $users; ?> and i have successfully get the correct data from the database but what if i want to display a specific data for example in this user table there is "usertype" that specify if the user is normal user or admin i want to user the same code above but to display a specific usertype i tried this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count()->WHERE usertype =admin; echo $users; ?> but it didn't work, what am i doing wrong? source https://stackoverflow.com/questions/68199726/how-to-show-number-of-registered-users-in-laravel-based-on-usertype

Why is my reports service not connecting?

I am trying to pull some data from a Postgres database using Node.js and node-postures but I can't figure out why my service isn't connecting. my routes/index.js file: const express = require('express'); const router = express.Router(); const ordersCountController = require('../controllers/ordersCountController'); const ordersController = require('../controllers/ordersController'); const weeklyReportsController = require('../controllers/weeklyReportsController'); router.get('/orders_count', ordersCountController); router.get('/orders', ordersController); router.get('/weekly_reports', weeklyReportsController); module.exports = router; My controllers/weeklyReportsController.js file: const weeklyReportsService = require('../services/weeklyReportsService'); const weeklyReportsController = async (req, res) => { try { const data = await weeklyReportsService; res.json({data}) console...

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...