Skip to main content

How to correctly use enter/update/exit pattern for flexbox I've created w/ d3.js?

I've created a flexbox w/ d3, and want to be able to search and sort it. I got search and sort working separately-- see here: https://jsfiddle.net/yx4o0gj8/1/ -- but not together.

I got help on the sorting via the last question I posted on Stack Overflow, and it was noted that I wasn't using the enter/edit/update pattern for d3. That's why search and sort don't work together.

I've tried moving to the enter/update/exit pattern, but I'm missing something. Now the data doesn't show up at all. I've looked at examples, but they are mostly showing charts where there is a .transition().duration() attribute added. I'm not sure what the equivalent 'update' portion would be here.

        data = [
            {
                "name": "Dave",
                "dept": "Marketing",
                "region": "South",
                "items": 28
            },
            {
                "name": "Amy",
                "dept": "IT",
                "region": "West",
                "items": 46
            },
            {
                "name": "John",
                "dept": "Sales",
                "region": "North",
                "items": 35
            },
            {
                "name": "Sarah",
                "dept": "Communications",
                "region": "North",
                "items": 13
            }
        ]

        drawTable(data)
        sortTable(data)

        function drawTable(data) {

            sortTable(data)

            let table = d3.select('#datatable')

            let row = table.selectAll('.row')
                .data(data)
                .enter()
                .append('div')
                .attr('class', (d, i) => 'row row' + i)

            let grid = row
                .append('div')
                .attr('class', 'grid')

            let name = grid.append('div')
                .attr('class', 'box')
                .html(d => d.name)

            let dept = grid.append('div')
                .attr('class', 'box')
                .html(d => d.dept)

            let state = grid.append('div')
                .attr('class', 'box')
                .html(d => d.region)

            let initiative = grid.append('div')
                .attr('class', 'box')
                .html(d => d.items)

            row.exit().remove()

            let searchCell = d3.selectAll('.box')

            $('#search').keyup(debounce(function () {
                let val = $.trim($(this).val()).replace(/ +/g, ' ').toLowerCase();

                let gridText
                let grid = d3.selectAll('.grid').each(function (j, i) {
                    if (j !== undefined) {
                        gridText = Object.values(j).toString().toLowerCase().replace(/,/g, ' ') + ' row' + i
                        let index = gridText.indexOf(val)

                        let resultRow = gridText.split(' ')
                        let rowReturn = resultRow.at(-1).replace(/\D/g, '')

                        if (index !== -1) {
                            d3.select('.row' + (rowReturn - 1)).style('display', 'contents')
                        } else {
                            d3.select('.row' + (rowReturn - 1)).style('display', 'none')
                        }
                    }

                })
            }, 300));

        }

        function sortTable(data) {
            d3.selectAll(".name,.dept,.region,.items").on('click', function () {
                d3.select(this).classed("sortAsc", d3.select(this).classed("sortAsc") ? false : true);

                let sortClasses = d3.select(this).attr("class")
                let splitSortClasses = sortClasses.split(' ')
                let sortVar = splitSortClasses[2]

                if (sortClasses.includes('sortAsc')) {
                    data.sort((a, b) => d3.ascending(a[sortVar], b[sortVar]))
                } else {
                    data.sort((a, b) => d3.descending(a[sortVar], b[sortVar]))
                }

                drawTable(data)
            })
        }

        function debounce(func, wait, immediate) {
            let timeout;
            return function () {
                let context = this, args = arguments;
                let later = function () {
                    timeout = null;
                    if (!immediate) func.apply(context, args);
                };
                let callNow = immediate && !timeout;
                clearTimeout(timeout);
                timeout = setTimeout(later, wait);
                if (callNow) func.apply(context, args);
            };
        };
    html,
    body {
      height: 100%;
      margin: 0;
    }

    .grid {
      display: flex;
      flex-wrap: wrap;
      flex-direction: row;
    }

    .grid>div {
      display: flex;
      flex-basis: calc(100%/4 - 28px);
      justify-content: center;
      flex-direction: column;
      padding: 10px;
    }

    .box {
      margin: 0;
    }

    .box {
      color: #000;
      border: .5px solid #ccc;
    }

    .hrbox {
      background-color: #333;
      color: #fff;
    }

    input#search {
      border: 1px solid #aaa;
      padding: 10px;
      border-radius: 3px;
      width: 300px;
      margin: 15px 10px;
    }
  <script src="https://d3js.org/d3.v6.min.js"></script>
  <script src="//ajax.googleapis.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script>
  
<input type="text" id="search" placeholder="Type to search">

  <div id="table">
    <div class="grid">
      <div class="box hrbox name">
        <div>name</div>
      </div>
      <div class="box hrbox dept">
        <div>dept</div>
      </div>
      <div class="box hrbox region">
        <div>region</div>
      </div>
      <div class="box hrbox items">
        <div>items</div>
      </div>
    </div>
    <div id="data-table"></div>
  </div>

All help greatly welcomed.

Thanks.

Via Active questions tagged javascript - Stack Overflow https://ift.tt/2FdjaAW

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...