Skip to main content

ConversationHandler not moving to the next state

I have the following ConversationHandler

conv_handler = ConversationHandler(
        entry_points=[CommandHandler('entry' entry)],
        states={
            ONE: [MessageHandler(filters.TEXT, one)],
            TWO: [MessageHandler(filters.TEXT, two)],
            THREE: [CallbackQueryHandler(three)],
            FOUR: [CallbackQueryHandler(four)]
        },
        fallbacks=[CommandHandler(Commands.CANCEL.value, cancel)],
    )

I defined the states keys as follows: ONE, TWO, THREE, FOUR = range(4)

Entry function:

async def entry(update: Update, context: ContextTypes) -> int:
    await update.message.reply_text("bla")
    return ONE

ONE function:

async def one(update: Update, context: ContextTypes) -> int:
    x = update.message.text
    await update.message.reply_text("yes. bla.")
    context.user_data["x"] = x
    return TWO

TWO function:

async def two(update: Update, context: ContextTypes) -> int:
    await update.message.reply_text("bla")
    keyboard = [
        ['7', '8', '9'],
        ['4', '5', '6'],
        ['1', '2', '3'],
        ['0']
    ]

    await update.message.reply_text("bla", reply_markup=InlineKeyboardMarkup(keyboard))
    query = update.callback_query
    await query.answer()
    context.user_data["x"] = query.data
    return THREE

The transition between the entry function to ONE works, but the next transition between ONE and TWO doesn't.

While debugging, when I am about to return ONE, the object self.map_to_parent is None so I suppose there was somewhat of a parsing error (?) in the ConversationHandler but I can't find it.

Additional info:

  • No errors displayed
  • python-telegram-bot = "==20.0a1"


source https://stackoverflow.com/questions/73838709/conversationhandler-not-moving-to-the-next-state

Comments

Popular posts from this blog

How to show number of registered users in Laravel based on usertype?

i'm trying to display data from the database in the admin dashboard i used this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count(); echo $users; ?> and i have successfully get the correct data from the database but what if i want to display a specific data for example in this user table there is "usertype" that specify if the user is normal user or admin i want to user the same code above but to display a specific usertype i tried this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count()->WHERE usertype =admin; echo $users; ?> but it didn't work, what am i doing wrong? source https://stackoverflow.com/questions/68199726/how-to-show-number-of-registered-users-in-laravel-based-on-usertype

Why is my reports service not connecting?

I am trying to pull some data from a Postgres database using Node.js and node-postures but I can't figure out why my service isn't connecting. my routes/index.js file: const express = require('express'); const router = express.Router(); const ordersCountController = require('../controllers/ordersCountController'); const ordersController = require('../controllers/ordersController'); const weeklyReportsController = require('../controllers/weeklyReportsController'); router.get('/orders_count', ordersCountController); router.get('/orders', ordersController); router.get('/weekly_reports', weeklyReportsController); module.exports = router; My controllers/weeklyReportsController.js file: const weeklyReportsService = require('../services/weeklyReportsService'); const weeklyReportsController = async (req, res) => { try { const data = await weeklyReportsService; res.json({data}) console...

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...