Skip to main content

How to set the new Node position always be Under the Previous node even if i drag the Node around the diagram

When I click add Node or add Crossroad it adds 1 node and 2 nodes consecutively. What I want to achieve is that every time I add nodes I want their positions to be rendered on the previous node position not always render on the same place. I tried some stuff but I can't achieve that, I need someone who has done this before with react flow. Look at addNode and addCrossroad functions. This is what I want to achieve:

enter image description here

import { useState, useCallback, useRef } from "react";
import ReactFlow, {
  applyEdgeChanges,
  applyNodeChanges,
  addEdge,
  Background,
} from "react-flow-renderer";
import { faker } from "@faker-js/faker";

const initialEdges = [];
const initialNodes = [];

function Flow() {
  const [nodes, setNodes] = useState(initialNodes);
  const [edges, setEdges] = useState(initialEdges);
  const [nodeId, setNodeId] = useState(undefined);
  const [ nodePos , setNodePos ] = useState({});
  const yPos = useRef(0);
  const [openModal, setOpenModal] = useState(false);
  const [openModalForNodes, SetopenModalForNodes] = useState(false);
  const [prevNode, setPrevNode] = useState(false);

  // Controlled component react node functions
  const onNodesChange = useCallback(
    (changes) => {
      // setNodePos({ x: changes[0]?.position?.x, y:changes[0]?.position?.y});
      // setNodePos(changes[0]?.position);
      setNodes((nds) => applyNodeChanges(changes, nds))
    },
    [setNodes]
  );

  // Get node position on drag end ( when dropping node )
  const onNodeDragStop = (_, node) => {
    // console.log(node);
    setNodePos(node.position);
  }
  const onEdgesChange = useCallback(
    (changes) => setEdges((eds) => applyEdgeChanges(changes, eds)),
    [setEdges]
  );
  const onConnect = useCallback(
    (connection) => setEdges((eds) => addEdge(connection, eds)),
    [setEdges]
  );
  // Get clicked node ids
  const onNodeClick = (e) => {
    const _nodeId_ = e.target.getAttribute("data-id");
    setNodeId(_nodeId_);
  };
  
  // Generate random character ID for Node
  function getRandomUppercaseChar() {
    var r = Math.floor(Math.random() * 26);
    return String.fromCharCode(65 + r);
  }

  console.log(nodePos);

  // Add 1 node
  const addNode = useCallback((prev) => {
    yPos.current += 50;

    console.log(-Math.abs(nodePos.x),  -Math.abs(nodePos.y), nodePos.x, nodePos.y, 'node posiition here');
    const node = {
      id: `${getRandomUppercaseChar()}`,
      position: {
        x: -Math.abs(nodePos.x),
        y: -Math.abs(nodePos.y)
      } && {
        x: 100,
        y: yPos.current
      },

      data: {
        label: faker.name.fullName(),
      },
      style: {
        width: 100,
      },
    };
    setNodes((nodes) => {
      return [...nodes, node];
    });

    if (prev) {
      const _prevNode_id = prev.getAttribute("data-id");
      setEdges((edges) => {
        return [
          ...edges,
          // For connecting edges , 'source' is the current node added and 'target' is the previous node
          {
            id: `${node.id}-${_prevNode_id}`,
            source: `${node.id}`,
            target: `${_prevNode_id}`,
            type: "step",
          },
        ];
      });
    }
    setOpenModal(false);
  }, []);

  const addCrossroad = useCallback(
    (prev) => {
      console.log(prev);
      yPos.current += 50;
      const node = [
        {
          id: `${getRandomUppercaseChar()}-${getRandomUppercaseChar()}`,
          position: { x: 50, y: yPos.current },
          data: { label: faker.name.fullName() },
          style: { width: 100 },
        },
        {
          id: `${getRandomUppercaseChar()}-${getRandomUppercaseChar()}`,
          position: { x: 150, y: yPos.current },
          data: {
            label: faker.name.fullName(),
          },
          style: {
            width: 100,
          },
        },
      ];
      setNodes((nodes) => {
        return [...nodes, ...node];
      });
      if (prev) {
        setEdges((edges) => {
          return [
            ...edges,
            // For connecting edges , 'source' is the current node added and 'target' is the previous node
            {
              id: `${node[0].id}-${nodeId}`,
              source: `${node[0].id}`,
              target: `${nodeId}`,
              type: "step",
              animated: true,
            },
            {
              id: `${node[1].id}-${nodeId}`,
              source: `${node[1].id}`,
              target: `${nodeId}`,
              type: "step",
              animated: true,
            },
          ];
        });
      }
      setOpenModal(false);
    },
    [nodeId]
  );

  // Track node 
  const TrackNode = (e) => {
    if (e.target.getAttribute("data-id")) {
      setPrevNode(e.target); 
      SetopenModalForNodes((prev) => !prev);
    }
  };

  return (
    <div>
      <div className="plusIcon" onClick={() => setOpenModal((prev) => !prev)}>
        <span>+</span>
      </div>

      {openModal ? (
        <div className="actionsModal">
          <button className="tool" onClick={() => addNode(prevNode)}>
            Add Tool
          </button>
          <button className="crossroad" onClick={() => addCrossroad(prevNode)}>
            Add Crossroad
          </button>
        </div>
      ) : null}

      {openModalForNodes ? (
        <div className="actionsModal">
          <button className="tool" onClick={() => addNode(prevNode)}>
            Add Tool{" "}
          </button>
          <button className="crossroad" onClick={() => addCrossroad(prevNode)}>
            Add Crossroad
          </button>
        </div>
      ) : null}

      <div style=>
        <ReactFlow
          nodes={nodes}
          onNodesChange={onNodesChange}
          onEdgesChange={onEdgesChange}
          onNodeDragStop={onNodeDragStop}
          onNodeClick={onNodeClick}
          onConnect={onConnect}
          onClick={(e) => TrackNode(e)}
          edges={edges}
          fitView
          defaultZoom={1}
          minZoom={0.2}
          maxZoom={4}
        >
          <Background />
        </ReactFlow>
      </div>
    </div>
  );
}

export default Flow;
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/16.6.3/umd/react.production.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/react-dom/16.6.3/umd/react-dom.production.min.js"></script>
Via Active questions tagged javascript - Stack Overflow https://ift.tt/AjHIclf

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...