Skip to main content

getBase64 inside a loop

I try to use getBase64 (to convert images to base64) inside a loop. The thing is that the front print the same image all the times.

const cloneResponse = JSON.parse(JSON.stringify(previewDataResponse));

async function filesToBase64() {
      if (imageUpdate.length > 0) {
        console.log(imageUpdate);
        cloneResponse.response_json_new.finalResponse.image = await getBase64(imageUpdate[0]);
      }
      if(lateralImages.length > 0){
        for (let i of cloneResponse.response_json_new.lateral.item_lateral){ 
              for (let j of lateralImages){
          let my64 = j;             
          i.image_lateral[0].path_image_lateral = await getBase64(my64);
        }
        }
      }
    }

const lateralImages is an array of objects with this structure:

[{name: 'IMG_20211015_151052.jpg', lastModified: 1663252467419, lastModifiedDate: Thu Sep 15 2022 16:34:27 GMT+0200 (hora de verano de Europa central), webkitRelativePath: '', size: 4178792}, {name: 'steps.jpg', lastModified: 1663236412688, lastModifiedDate: Thu Sep 15 2022 12:06:52 GMT+0200 (hora de verano de Europa central}]

Thanks for your help

Via Active questions tagged javascript - Stack Overflow https://ift.tt/lGtBC26

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...