Reading through ArrayFire documentation, I noticed that the library supports batched operations when using 2D convolution. Therefore, I need to apply N filters to an image using the C++ API.
For easy testing, I decided to create a simple Python script to assert the convolution results. However, I couldn't get proper results when using >1 filters and comparing them to OpenCV's 2D convolution separately. Following is my Python script:
import arrayfire as af
import cv2
import numpy as np
np.random.seed(1)
np.set_printoptions(precision=3)
af.set_backend('cuda')
n_kernels = 2
image = np.random.randn(512,512).astype(np.float32)
kernels_list = [np.random.randn(7,7).astype(np.float32) for _ in range(n_kernels)]
conv_cv_list = [cv2.filter2D(image, -1, cv2.flip(kernel,-1), borderType=cv2.BORDER_CONSTANT) for kernel in kernels_list]
image_gpu = af.array.Array(image.ctypes.data, image.shape, image.dtype.char)
kernels = np.stack(kernels_list, axis=-1) if n_kernels > 1 else kernels_list[0]
kernels_gpu = af.array.Array(kernels.ctypes.data, kernels.shape, kernels.dtype.char)
conv_af_gpu = af.convolve2(image_gpu, kernels_gpu)
conv_af = conv_af_gpu.to_ndarray()
if n_kernels == 1:
conv_af = conv_af[..., None]
for kernel_idx in range(n_kernels):
print("CV conv:", conv_cv_list[kernel_idx][0, 0])
print("AF conv", conv_af[0, 0, kernel_idx])
That said, I would like to know how properly use ArrayFire batched support.
source https://stackoverflow.com/questions/74605090/how-to-use-arrayfire-batched-2d-convolution
Comments
Post a Comment