Skip to main content

WebGL: INVALID_VALUE: texImage2D: invalid internalformat - depthTexture in webgl2

const depthTextures = gl => {
  const depthTexture = gl.createTexture();
  const depthTextureSize = 512;
  gl.bindTexture(gl.TEXTURE_2D, depthTexture);
  gl.texImage2D(gl.TEXTURE_2D, // target
  0, // mip level
  gl.DEPTH_COMPONENT, // internal format
  depthTextureSize, // width
  depthTextureSize, // height
  0, // border
  gl.DEPTH_COMPONENT, // format
  gl.UNSIGNED_INT, // type
  null); // data

  gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
  gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
  gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
  gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
  const depthFramebuffer = gl.createFramebuffer();
  gl.bindFramebuffer(gl.FRAMEBUFFER, depthFramebuffer);
  gl.framebufferTexture2D(gl.FRAMEBUFFER, // target
  gl.DEPTH_ATTACHMENT, // attachment point
  gl.TEXTURE_2D, // texture target
  depthTexture, // texture
  0); // mip level
  // create a color texture of the same size as the depth texture
  // see article why this is needed_

  const unusedTexture = gl.createTexture();
  gl.bindTexture(gl.TEXTURE_2D, unusedTexture);
  gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, depthTextureSize, depthTextureSize, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);
  gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
  gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
  gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
  gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE); // attach it to the framebuffer

  gl.framebufferTexture2D(gl.FRAMEBUFFER, // target
  gl.COLOR_ATTACHMENT0, // attachment point
  gl.TEXTURE_2D, // texture target
  unusedTexture, // texture
  0); // mip level

  return [depthFramebuffer, unusedTexture];
};

I found

Note: This extension is only available to WebGL1 contexts. In WebGL2, the functionality of this extension is available on the WebGL2 context by default. The constant in WebGL2 is gl.UNSIGNED_INT_24_8.

I change DEPTH_COMPONENT with RGBA but still no attaced framebuffer...

In other combination i get :

gl.texImage2D(
    gl.TEXTURE_2D,      // target
    0,                  // mip level
    gl.RGBA, // internal format
    depthTextureSize,   // width
    depthTextureSize,   // height
    0,                  // border
    gl.RGBA, // format
    gl.UNSIGNED_INT_24_8,    // type
    null);              // data
 GL_INVALID_OPERATION: Invalid combination of format, type and internalFormat.

 GL_INVALID_OPERATION: Only array uniforms may have count > 1.

Any suggestion ?

This is source which i wanna implement in my own already exist glmatrix project...

Via Active questions tagged javascript - Stack Overflow https://ift.tt/o1Z6zXr

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...