Skip to main content

Having issues with collisions, I think the problem is 'for' loops

I have 2 objects in a list and the collision is supposed to start an action but it only works with the first object in the list.

https://imgur.com/a/oJn1GKf

In the imgur link, the first video is the feature that I'm making where when you collide with one of the power up tiles, time slows and you get a choice between speed, an extra jump, and something else I haven't decided yet. But you can see it only activates with the one on the right which is the first object in the list, which I am assuming is an issue with me using a for loop but I'm not sure. This is all of the stuff in the event:

  for i in p_up_rects: 
      pygame.Rect.move_ip(i, - scroll[0], - scroll[1]) 
      DISPLAYSURF.blit(p_up_sprite, i)
      if moves.square.colliderect(i):
        p_up_coll = True
        time_slow += (time_slow_target - time_slow) / 50
        if abs(time_slow_target - time_slow)*100 <= 5:
          time_slow = .005
        if time_slow <= .005:

          #math
          if p_up_scale_timer < 60:
            p_up_outline_r += (p_up_outline_r_target - p_up_outline_r) / 50
            p_up_outline_r = min(p_up_outline_r, p_up_outline_r_target)

            left_up_off[0] += (left_up_off_target[0] - left_up_off[0]) / 100
            left_up_off[1] += (left_up_off_target[1] - left_up_off[1]) / 100

            mid_up_off[1] += (mid_up_off_target - mid_up_off[1]) / 100

            right_up_off[0] += (right_up_off_target[0] - right_up_off[0]) / 100
            right_up_off[1] += (right_up_off_target[1] - right_up_off[1]) / 100

            left_up_off[0] = max(left_up_off[0], -100)
            left_up_off[1] = max(left_up_off[1], -50)

            mid_up_off[1] = max(mid_up_off[1], -100)

            right_up_off[0] = min(right_up_off[0], 100)
            right_up_off[1] = max(right_up_off[1], -50)

          #scaling things
          if made_choice == True:
            p_up_scale_timer += (61 - p_up_scale_timer) / 100

            if p_up_chosen['left'] == True:

              if p_up_scale_timer < 60: # adjusting the scales
                p_up_scale_off_right[0] += (.5 - p_up_scale_off_right[0]) / 100
                p_up_scale_off_right[1] += (.5 - p_up_scale_off_right[1]) / 100

                p_up_scale_off_mid[0] += (.5 - p_up_scale_off_mid[0]) / 100
                p_up_scale_off_mid[1] += (.5 - p_up_scale_off_mid[1]) / 100

                p_up_scale_off_left[0] += (60 - p_up_scale_off_left[0]) / 100
                p_up_scale_off_left[1] += (60 - p_up_scale_off_left[1]) / 100

              elif p_up_scale_timer >= 60:
                left_up_off[0] += (0 - left_up_off[0]) / 50
                left_up_off[1] += (0 - left_up_off[1]) / 50
                
                p_up_scale_off_left[0] += (25 - p_up_scale_off_left[0]) / 50
                p_up_scale_off_left[1] += (25 - p_up_scale_off_left[1]) / 50

            elif p_up_chosen['mid'] == True:
              if p_up_scale_timer < 60: # adjusting the scales
                p_up_scale_off_right[0] += (.5 - p_up_scale_off_right[0]) / 100
                p_up_scale_off_right[1] += (.5 - p_up_scale_off_right[1]) / 100

                p_up_scale_off_left[0] += (.5 - p_up_scale_off_left[0]) / 100
                p_up_scale_off_left[1] += (.5 - p_up_scale_off_left[1]) / 100
                
                p_up_scale_off_mid[0] += (60 - p_up_scale_off_mid[0]) / 100
                p_up_scale_off_mid[1] += (60 - p_up_scale_off_mid[1]) / 100

              elif p_up_scale_timer >= 60:
                mid_up_off[1] += (0 - mid_up_off[1]) / 50
                
                p_up_scale_off_mid[0] += (25 - p_up_scale_off_mid[0]) / 50
                p_up_scale_off_mid[1] += (25 - p_up_scale_off_mid[1]) / 50

            elif p_up_chosen['right'] == True:
              if p_up_scale_timer < 60: # adjusting the scales
                p_up_scale_off_left[0] += (.5 - p_up_scale_off_left[0]) / 100
                p_up_scale_off_left[1] += (.5 - p_up_scale_off_left[1]) / 100

                p_up_scale_off_mid[0] += (.5 - p_up_scale_off_mid[0]) / 100
                p_up_scale_off_mid[1] += (.5 - p_up_scale_off_mid[1]) / 100

                p_up_scale_off_right[0] += (60 - p_up_scale_off_right[0]) / 100
                p_up_scale_off_right[1] += (60 - p_up_scale_off_right[1]) / 100

              elif p_up_scale_timer >= 60:
                right_up_off[0] += (0 - right_up_off[0]) / 50
                right_up_off[1] += (0 - right_up_off[1]) / 50
                
                p_up_scale_off_right[0] += (25 - p_up_scale_off_right[0]) / 50
                p_up_scale_off_right[1] += (25 - p_up_scale_off_right[1]) / 50

            if p_up_scale_timer >= 60:
              p_up_outline_r += (0 - p_up_outline_r) / 100
              if p_up_outline_r <= 20:
                p_up_rects.remove(i)
                if p_up_outline_r <= 10:
                   p_up_coll = False


source https://stackoverflow.com/questions/74587273/having-issues-with-collisions-i-think-the-problem-is-for-loops

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...