Skip to main content

@event bloque ma commande en python

Bonjour à tous !

Je débute en python et j'essaye actuellement de m'entrainer à faire un petit bot discord. Cependant je suis confronté à un problème que je n'arrive pas à résoudre. J'ai créer un @event afin d'envoyer un message lorsque l'on mentionne quelqu'un sur discord et j'ai également créer un @commands qui me permet de faire un !rm pour supprimer des messages d'une conversation. Malheureusement quand je lance mon code ma commande rm ne fonctionne plus alors que mon event lui fonctionne encore. Quand je commente mon event la commande rm fonctionne. Pouvez vous m'aider s'il vous plait ?

Merci d'avance :)

Code :

# -*- coding: UTF-8 -*-

import os
import discord
import random
import message_by_name
from discord.ext import commands
from discord import message

bot = commands.Bot(intents=discord.Intents.all(), command_prefix = "!", description = "couteau suisse")

@bot.event
async def on_ready():
    print("Le bot est prêt")


@bot.event
async def on_message(message):
    for prenom in message_by_name.message_by_name:
       if message.content.lower() ==  prenom :
            await message.channel.send(random.choice(message_by_name.message_by_name[prenom]))
            


@commands.command()
async def rm(ctx, nombre : int):
    messages = [message async for message in ctx.channel.history(limit = nombre +1)]
    for message in messages:
        await message.delete()
bot.add_command(rm)

bot.run("XXXXXXXXXXXXXXXXXXXXXXXXXXXXX")

J'ai essayé de regarder sur des forums et rajouté des await par ci par la mais bon je ne suis pas certain de bien avoir exécuté ce qui été dit.



source https://stackoverflow.com/questions/74633682/event-bloque-ma-commande-en-python

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...