Skip to main content

@event bloque ma commande en python

Bonjour à tous !

Je débute en python et j'essaye actuellement de m'entrainer à faire un petit bot discord. Cependant je suis confronté à un problème que je n'arrive pas à résoudre. J'ai créer un @event afin d'envoyer un message lorsque l'on mentionne quelqu'un sur discord et j'ai également créer un @commands qui me permet de faire un !rm pour supprimer des messages d'une conversation. Malheureusement quand je lance mon code ma commande rm ne fonctionne plus alors que mon event lui fonctionne encore. Quand je commente mon event la commande rm fonctionne. Pouvez vous m'aider s'il vous plait ?

Merci d'avance :)

Code :

# -*- coding: UTF-8 -*-

import os
import discord
import random
import message_by_name
from discord.ext import commands
from discord import message

bot = commands.Bot(intents=discord.Intents.all(), command_prefix = "!", description = "couteau suisse")

@bot.event
async def on_ready():
    print("Le bot est prêt")


@bot.event
async def on_message(message):
    for prenom in message_by_name.message_by_name:
       if message.content.lower() ==  prenom :
            await message.channel.send(random.choice(message_by_name.message_by_name[prenom]))
            


@commands.command()
async def rm(ctx, nombre : int):
    messages = [message async for message in ctx.channel.history(limit = nombre +1)]
    for message in messages:
        await message.delete()
bot.add_command(rm)

bot.run("XXXXXXXXXXXXXXXXXXXXXXXXXXXXX")

J'ai essayé de regarder sur des forums et rajouté des await par ci par la mais bon je ne suis pas certain de bien avoir exécuté ce qui été dit.



source https://stackoverflow.com/questions/74633682/event-bloque-ma-commande-en-python

Comments

Popular posts from this blog

How to show number of registered users in Laravel based on usertype?

i'm trying to display data from the database in the admin dashboard i used this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count(); echo $users; ?> and i have successfully get the correct data from the database but what if i want to display a specific data for example in this user table there is "usertype" that specify if the user is normal user or admin i want to user the same code above but to display a specific usertype i tried this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count()->WHERE usertype =admin; echo $users; ?> but it didn't work, what am i doing wrong? source https://stackoverflow.com/questions/68199726/how-to-show-number-of-registered-users-in-laravel-based-on-usertype

How to split a rinex file if I need 24 hours data

Trying to divide rinex file using the command gfzrnx but getting this error. While doing that getting this error msg 'gfzrnx' is not recognized as an internal or external command Trying to split rinex file using the command gfzrnx. also install'gfzrnx'. my doubt is I need to run this program in 'gfzrnx' or in 'cmdprompt'. I am expecting a rinex file with 24 hrs or 1 day data.I Have 48 hrs data in RINEX format. Please help me to solve this issue. source https://stackoverflow.com/questions/75385367/how-to-split-a-rinex-file-if-i-need-24-hours-data

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...