Skip to main content

django can you filter for different value for each object in one query

how to filter for different value for each object and is there is a better way to validate that amount of sales items wont be bigger than purchases items

here is what I think is wrong in SaleItemListSerializer I am making a for loop and for each item I get its medicine and expiry date then finding sum by making 2 subquery and a query so if I have 15 item there will be 15 query on the database the total response time is in average about 0.8 s in sqlite but in mysql it grows to 1.5 ( still i want to add retrived items and disposed items in the supquery so it will grow bigger )

so is there is a way to annotate all medicine that are in items each with its expiry date ( which is stored in sale items and purchase items ) in one database query ?

I think I am making alot of mistakes I am still new to django any help will be appreciated

class SaleAddSerializer(serializers.ModelSerializer):
    items = serializers.ListField(child=serializers.DictField(),write_only=True,min_length=1)
    class Meta:
       model = Sale
       fields = ['doctor_name','coustomer_name','items']

    def validate_items(self,items):     
        seen_items = {}

        for item in items:

            if set(item.keys()) != {'medicine', 'quantity', 'price', 'expiry_date'}:
                raise serializers.ValidationError(_('item should have have medicine quantity and price only'))

            key = (item['medicine'])

            if key in seen_items:

                existing_item = seen_items[key]

                if existing_item['price'] != item['price'] or existing_item['expiry_date'] != item['expiry_date']:
                    raise serializers.ValidationError(_('same item with diffrent price exist or expiry_date exist'))
                existing_item['quantity'] += item['quantity']
            else:
                seen_items[key] = item

        items.clear()
        items.extend(seen_items.values())
        return items
    
    def create(self, validated_data):
        items = validated_data.pop('items')
        pharmacy_id=self.context['pharmacy_pk']
        seller_id=self.context['seller']
        data = validated_data

        with transaction.atomic():
            self.instance = Sale.objects.create(pharmacy_id=pharmacy_id,seller_id=seller_id,**data)
            new_context = {'sale':self.instance,'pharmacy_pk':pharmacy_id}
            item_serializer = SaleItemSerializer(data=items,many=True,context=new_context)
            if not item_serializer.is_valid():
                raise serializers.ValidationError({'error':_('some items are invalid')})
            item_serializer.save()

        return self.instance

the SaleItemSerializer is

class SaleItemSerializer(serializers.ModelSerializer):
    class Meta:
        model = SaleItem
        fields = ['id','medicine','quantity','price','expiry_date']
        list_serializer_class = SaleItemListSerializer

and SaleItemListSerializer for creating multiple items at once

class SaleItemListSerializer(serializers.ListSerializer):
    def create(self, validated_data):
        sale = self.context['sale']
        pharmacy_id = self.context['pharmacy_pk']

        for item in validated_data:
                
                medicine = item['medicine']
                expiry_date = item['expiry_date']

                sales = SaleItem.objects.filter(medicine=OuterRef('pk'),sale__pharmacy_id=pharmacy_id,expiry_date=expiry_date).values('medicine').annotate(amount_sum=Sum('quantity')).values('amount_sum')
                purchase = PurchaseItem.objects.filter(medicine=OuterRef('pk'),purchase__pharmacy_id=pharmacy_id,expiry_date=expiry_date).values('medicine').annotate(amount_sum=Sum('quantity')).values('amount_sum')
                amount = Medicine.objects.annotate(amount=Coalesce(Subquery(purchase),None) - Coalesce(Subquery(sales),0)).values('amount').get(id=medicine.id)['amount']
            
                if amount and amount - item['quantity'] >= 0:
                    if medicine.min_quanity > amount - item['quantity'] >= 0:
                        print('smaller')
                else:
                    raise serializers.ValidationError(f"There is no purchase for medicine {medicine} in pharmacy {pharmacy_id} with this date or not enough amount")

        items = [SaleItem(sale=sale,**item) for item in validated_data]
        return SaleItem.objects.bulk_create(items)


source https://stackoverflow.com/questions/76335524/django-can-you-filter-for-different-value-for-each-object-in-one-query

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...