Skip to main content

Match the string data inside a group - Pandas

I have dataframe like this:

+--------+------------+----------+--------------+--------------+----------------+--------------+--------------+
| company|          id|ann_rtn_dt|share_class_nb|shrhldr_seq_nb|shrhldr_first_nm|shrhldr_mid_nm|shrhldr_sur_nm|
+--------+------------+----------+--------------+--------------+----------------+--------------+--------------+
|SYNTHE01|SYNTHE01_1_1|2022-11-28|             1|             1|            NIEL|        ANDREW|        HOPSON|
|SYNTHE01|SYNTHE01_3_1|2022-11-28|             3|             1|          NICOLE|        CLAIRE|          MORE|
|SYNTHE01|SYNTHE01_1_2|2022-11-28|             1|             2|               N|             C|          MORE|
|SYNTHE01|SYNTHE01_2_1|2022-11-28|             2|             1|            NEIL|        ANDREW|        HOPSON|
|SYNTHE01|SYNTHE01_3_1|2022-11-28|             3|             1|          NICOLE|        CLAIRE|          MORE|
|SYNTHE02|SYNTHE02_1_1|2022-11-28|             1|             1|            MIKE|              |        LOPSON|
|SYNTHE02|SYNTHE02_3_1|2022-11-28|             3|             1|          NIMIKE|              |        LOPSON|
|SYNTHE02|SYNTHE02_1_2|2022-11-28|             1|             2|            MIKE|              |        LOPSON|
|SYNTHE02|SYNTHE02_2_1|2022-11-28|             2|             1|            MIKE|              |        LOPSON|
+--------+------------+----------+--------------+--------------+----------------+--------------+--------------+

The whole dataframe can be grouped 2 distinct company column i.e. SYNTE01 and SYNTHE02.

My use case is to do matching inside the company.

STATUS_1 is set to min of id, when there is full match of shrhldr_first_nm, shrhldr_mid_nm and shrhldr_sur_nm in the grouop.

STATUS_2 is set to min of id, when there is match of first byte of shrhldr_first_nm and shrhldr_mid_nm in the group. And shrhldr_sur_nm matches exactly.

For eg. in COMPANY SYNTHE01, NIEL ANDREW HOPSON in row1 matches with NIEL ANDREW HOPSON in row4. The column STATUS_1 is set to min of id column for both.

For eg. in COMPANY SYNTHE01, the first byte of NICOLE CLAIRE MORE in row2 matches with N C More in row3. The column STATUS_2 is set to min of id column for both.

My output dataframe would look like below:

+--------+------------+----------+--------------+--------------+----------------+--------------+--------------+-------------+-------------+
| company|          id|ann_rtn_dt|share_class_nb|shrhldr_seq_nb|shrhldr_first_nm|shrhldr_mid_nm|shrhldr_sur_nm|     STATUS_1|     STATUS_2|
+--------+------------+----------+--------------+--------------+----------------+--------------+--------------+-------------+-------------+
|SYNTHE01|SYNTHE01_1_1|2022-11-28|             1|             1|            NIEL|        ANDREW|        HOPSON| SYNTHE01_1_1|             |
|SYNTHE01|SYNTHE01_3_1|2022-11-28|             3|             1|          NICOLE|        CLAIRE|          MORE| SYNTHE01_3_1| SYNTHE01_1_2|
|SYNTHE01|SYNTHE01_1_2|2022-11-28|             1|             2|               N|             C|          MORE|             | SYNTHE01_1_2|
|SYNTHE01|SYNTHE01_2_1|2022-11-28|             2|             1|            NEIL|        ANDREW|        HOPSON| SYNTHE01_1_1|             |
|SYNTHE01|SYNTHE01_3_2|2022-11-28|             3|             1|          NICOLE|        CLAIRE|          MORE| SYNTHE01_3_1| SYNTHE01_1_2|
|SYNTHE02|SYNTHE02_1_1|2022-11-28|             1|             1|            MIKE|              |        LOPSON| SYNTHE02_1_1|             |
|SYNTHE02|SYNTHE02_3_1|2022-11-28|             3|             1|          NIMIKE|              |        LOPSON|             |             |
|SYNTHE02|SYNTHE02_1_2|2022-11-28|             1|             2|            MIKE|              |        LOPSON| SYNTHE02_1_1|             |
|SYNTHE02|SYNTHE02_2_1|2022-11-28|             2|             1|            MIKE|              |        LOPSON| SYNTHE02_1_1|             |
+--------+------------+----------+--------------+--------------+----------------+--------------+--------------+-------------+-------------+

We tried this in Pyspark, could not achieve it. We are now trying to do it in Pandas. Please suggest any possible approach. Thank you.



source https://stackoverflow.com/questions/76256407/match-the-string-data-inside-a-group-pandas

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...