Skip to main content

3 Body Problem Outputs a spikey ball rather than an orbital path

I'm trying to solve the 3 body problem with solve_ivp and its runge kutta sim, but instead of a nice orbital path it outputs a spiked ball of death. I've tried changing the step sizes and step lengths all sorts, I have no idea why the graphs are so spikey, it makes no sense to me.

i have now implemented the velocity as was suggested but i may have done it wrong

What am I doing wrong?

Updated Code:

from scipy.integrate import solve_ivp
import numpy as np
import matplotlib.pyplot as plt

R = 150000000 #radius from centre of mass to stars orbit
#G = 1/(4*np.pi*np.pi) #Gravitational constant in AU^3/solar mass * years^2
G = 6.67e-11
M = 5e30 #mass of the stars assumed equal mass in solar mass
Omega = np.sqrt(G*M/R**3.0) #inverse of the orbital period of the stars
t = np.arange(0, 1000, 1)
x = 200000000
y = 200000000
vx0 = -0.0003
vy0 = 0.0003

X1 = R*np.cos(Omega*t)
X2 = -R*np.cos(Omega*t)
Y1 = R*np.sin(Omega*t)
Y2 = -R*np.sin(Omega*t) #cartesian coordinates of both stars 1 and 2
r1 = np.sqrt((x-X1)**2.0+(y-Y1)**2.0) #distance from planet to star 1 or 2
r2 = np.sqrt((x-X2)**2.0+(y-Y2)**2.0)
xacc = -G*M*((1/r1**2.0)*((x-X1)/r1)+(1/r2**2.0)*((x-X2)/r2))
yacc = -G*M*((1/r1**2.0)*((y-Y1)/r1)+(1/r2**2.0)*((y-Y2)/r2)) #x double dot and y double dot equations of motions

#when t = 0 we get the initial contditions

r1_0 = np.sqrt((x-R)**2.0+(y-0)**2.0)
r2_0 = np.sqrt((x+R)**2.0+(y+0)**2.0)
xacc0 = -G*M*((1/r1_0**2.0)*((x-R)/r1_0)+(1/r2_0**2.0)*((x+R)/r2_0))
yacc0 = -G*M*((1/r1_0**2.0)*((y-0)/r1_0)+(1/r2_0**2.0)*((y+0)/r2_0))

#inputs for runge-kutta algorithm
tp = Omega*t
r1p = r1/R
r2p = r2/R
xp = x/R
yp = y/R
X1p = X1/R
X2p = X2/R
Y1p = Y1/R
Y2p = Y2/R

#4 1st ode 

#vx = dx/dt
#vy = dy/dt

#dvxp/dtp = -(((xp-X1p)/r1p**3.0)+((xp-X2p)/r2p**3.0))
#dvyp/dtp = -(((yp-Y1p)/r1p**3.0)+((yp-Y2p)/r2p**3.0))

epsilon = x*np.cos(Omega*t)+y*np.sin(Omega*t)
nave = -x*np.sin(Omega*t)+y*np.cos(Omega*t)


# =============================================================================
# def dxdt(x, t):
#     return vx
# 
# def dydt(y, t):
#     return vy
# =============================================================================

def dvdt(t, state):
    xp, yp = state
    X1p = np.cos(Omega*t)
    X2p = -np.cos(Omega*t)
    Y1p = np.sin(Omega*t)
    Y2p = -np.sin(Omega*t)
    r1p = np.sqrt((xp-X1p)**2.0+(yp-Y1p)**2.0)
    r2p = np.sqrt((xp-X2p)**2.0+(yp-Y2p)**2.0)
    return (-(((xp-X1p)/(r1p**3.0))+((xp-X2p)/(r2p**3.0))),-(((yp-Y1p)/(r1p**3.0))+((yp-Y2p)/(r2p**3.0)))) 
    
def vel(t, state): 
    xp, yp, xv, yv = state
    return (np.concatenate([[xv, yv], dvdt(t, [xp, yp]) ]))

p = (R, G, M, Omega)
initial_state = [xp, yp, vx0, vy0]

t_span = (0.0, 1000) #1000 years

result_solve_ivp_dvdt = solve_ivp(vel, t_span, initial_state, atol=0.1) #Runge Kutta
fig = plt.figure()
plt.plot(result_solve_ivp_dvdt.y[0,:], result_solve_ivp_dvdt.y[1,:])
plt.plot(X1p, Y1p)
plt.plot(X2p, Y2p)

Output: Green is the stars plot and blue remains the velocity Km and seconds Years, AU and Solar Masses



source https://stackoverflow.com/questions/71882916/3-body-problem-outputs-a-spikey-ball-rather-than-an-orbital-path

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...