Skip to main content

Why is not the following 3D polar plot of Array Factor being plotted?

import numpy as np
import math as mt
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as axes3d

####################################################################################
fig = plt.figure()
ax = fig.gca(projection='3d')   #fig.add_subplot(1,1,1, projection='3d')
####################################################################################

freq = 30e+6        # in Hz     # 30 MHz
lam = 3e+8/freq     # in m
k_o = 2*np.pi/lam

theta = np.linspace(0, np.pi, 100)  # in radians
phi = np.linspace(0, 2*np.pi, 100)  # in radians


###############################################################################################################################
N_E = 6     # number of elements # positions on the vertices of a pentagon
###############################################################################################################################
D_XY = 3.5  # in m
R_XY = 1.7*D_XY
C1 = 0.309
C2 = 0.809
S1 = 0.951
S2 = 0.5878
XY = np.array([[0, 0], [0, R_XY], [-R_XY*S1, R_XY*C1], [-R_XY*S2, -R_XY*C2], [R_XY*S2, -R_XY*C2], [R_XY*S1, R_XY*C1]])
#print(len(XY))
w = np.array([3, 1, 1, 1, 1, 1])
###############################################################################################################################

def gain(XY, k_o, w, theta, phi):
    """Return the power as a function of azimuthal angle, phi."""

    AF = 0.0
    for n in range(len(XY)):

        relative_phase = k_o*( (XY[n][0])*np.sin(theta)*np.cos(phi) + (XY[n][1])*np.sin(theta)*np.sin(phi) )    #Relative phase calculation
        beta_n = -k_o*( (XY[n][0])*np.sin(mt.radians(30))*np.cos(mt.radians(60)) + (XY[n][1])*np.sin(mt.radians(30))*np.sin(mt.radians(60)) )   #beta

        psi = relative_phase + beta_n   # Progressive phase-shift

        AF = AF + w[n]*np.exp(1j*psi)

    g = np.abs(AF)**2
    return g

###############################################################################################################################

def get_directive_gain(g, minDdBi=-20):
    """Return the "directive gain" of the antenna array producing gain g."""
    DdBi = 10 * np.log10(g / np.max(g))
    return np.clip(DdBi, minDdBi, None)

###############################################################################################################################

th, ph = np.meshgrid(theta, phi)
G = np.zeros((100,100))
for l in range(100):
    for o in range(100):
        g = gain(XY, k_o, w, th[l], ph[o])
        G[l][o] = g # get_directive_gain(g)

plot = ax.plot_surface(th, ph, G, cmap='viridis', edgecolor='none')
plt.show()

Although, 2D-polar plot of the gain/array factor with respect to theta and phi, individually, is working accurately. However, as I am trying to plot theta, phi, gain altogether it is not working. I found it to be bit tricky "3d-Polar-Plot". So, I humbly request if anyone could kindly suggest me or point out my mistakes. I would be obliged.



source https://stackoverflow.com/questions/71995629/why-is-not-the-following-3d-polar-plot-of-array-factor-being-plotted

Comments

Popular posts from this blog

How to show number of registered users in Laravel based on usertype?

i'm trying to display data from the database in the admin dashboard i used this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count(); echo $users; ?> and i have successfully get the correct data from the database but what if i want to display a specific data for example in this user table there is "usertype" that specify if the user is normal user or admin i want to user the same code above but to display a specific usertype i tried this: <?php use Illuminate\Support\Facades\DB; $users = DB::table('users')->count()->WHERE usertype =admin; echo $users; ?> but it didn't work, what am i doing wrong? source https://stackoverflow.com/questions/68199726/how-to-show-number-of-registered-users-in-laravel-based-on-usertype

Why is my reports service not connecting?

I am trying to pull some data from a Postgres database using Node.js and node-postures but I can't figure out why my service isn't connecting. my routes/index.js file: const express = require('express'); const router = express.Router(); const ordersCountController = require('../controllers/ordersCountController'); const ordersController = require('../controllers/ordersController'); const weeklyReportsController = require('../controllers/weeklyReportsController'); router.get('/orders_count', ordersCountController); router.get('/orders', ordersController); router.get('/weekly_reports', weeklyReportsController); module.exports = router; My controllers/weeklyReportsController.js file: const weeklyReportsService = require('../services/weeklyReportsService'); const weeklyReportsController = async (req, res) => { try { const data = await weeklyReportsService; res.json({data}) console...

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...