Skip to main content

Why is not the following 3D polar plot of Array Factor being plotted?

import numpy as np
import math as mt
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as axes3d

####################################################################################
fig = plt.figure()
ax = fig.gca(projection='3d')   #fig.add_subplot(1,1,1, projection='3d')
####################################################################################

freq = 30e+6        # in Hz     # 30 MHz
lam = 3e+8/freq     # in m
k_o = 2*np.pi/lam

theta = np.linspace(0, np.pi, 100)  # in radians
phi = np.linspace(0, 2*np.pi, 100)  # in radians


###############################################################################################################################
N_E = 6     # number of elements # positions on the vertices of a pentagon
###############################################################################################################################
D_XY = 3.5  # in m
R_XY = 1.7*D_XY
C1 = 0.309
C2 = 0.809
S1 = 0.951
S2 = 0.5878
XY = np.array([[0, 0], [0, R_XY], [-R_XY*S1, R_XY*C1], [-R_XY*S2, -R_XY*C2], [R_XY*S2, -R_XY*C2], [R_XY*S1, R_XY*C1]])
#print(len(XY))
w = np.array([3, 1, 1, 1, 1, 1])
###############################################################################################################################

def gain(XY, k_o, w, theta, phi):
    """Return the power as a function of azimuthal angle, phi."""

    AF = 0.0
    for n in range(len(XY)):

        relative_phase = k_o*( (XY[n][0])*np.sin(theta)*np.cos(phi) + (XY[n][1])*np.sin(theta)*np.sin(phi) )    #Relative phase calculation
        beta_n = -k_o*( (XY[n][0])*np.sin(mt.radians(30))*np.cos(mt.radians(60)) + (XY[n][1])*np.sin(mt.radians(30))*np.sin(mt.radians(60)) )   #beta

        psi = relative_phase + beta_n   # Progressive phase-shift

        AF = AF + w[n]*np.exp(1j*psi)

    g = np.abs(AF)**2
    return g

###############################################################################################################################

def get_directive_gain(g, minDdBi=-20):
    """Return the "directive gain" of the antenna array producing gain g."""
    DdBi = 10 * np.log10(g / np.max(g))
    return np.clip(DdBi, minDdBi, None)

###############################################################################################################################

th, ph = np.meshgrid(theta, phi)
G = np.zeros((100,100))
for l in range(100):
    for o in range(100):
        g = gain(XY, k_o, w, th[l], ph[o])
        G[l][o] = g # get_directive_gain(g)

plot = ax.plot_surface(th, ph, G, cmap='viridis', edgecolor='none')
plt.show()

Although, 2D-polar plot of the gain/array factor with respect to theta and phi, individually, is working accurately. However, as I am trying to plot theta, phi, gain altogether it is not working. I found it to be bit tricky "3d-Polar-Plot". So, I humbly request if anyone could kindly suggest me or point out my mistakes. I would be obliged.



source https://stackoverflow.com/questions/71995629/why-is-not-the-following-3d-polar-plot-of-array-factor-being-plotted

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...