Skip to main content

How to merge 2 dataframes on multiple columns containing duplicates

so I have 2 dataframes df1 and df2.

df1

names = ['Bob', 'Joe', '', 'Bob', '0000', 'Alice', 'Joe', 'Alice', 'Bob', '']
df1 = pd.DataFrame({'names': names,'ages': ages})

df2

names_in_student_db = [' Bob', ' Joe ', '', ' Bob ', 'Chris', 'Alice', 'Joe ', 'Alice ', ' Bob ', 'Daniel']
df2 = pd.DataFrame({'student_names': names_in_student_db,'grades': grades})

Now, I want to merge these 2 dataframes but obviously, there are 2 problems:

  1. names and names_in_student_db are not fully identical.
  2. Both of them contain duplicates ā€” this seems to be making merge functions to throw an error. Also, duplicates in one column are not the same (meaning let's say, 1st Bob and 3rd Bob in any of these columns are not the same person), but let's say the 2nd Bob in 1st column and 2nd Bob in the 2nd column are the same person.

So how do I write a general code (not tailored for these specific dataframes) to solve this? I'm looking for outer join btw.

My guess is I could create another column in each dataframe, let's call it 'order' column which basically would be basically integers from 0 to 9. And then if I could merge dataframes based on 2 columns (I mean matching 'order1' column with 'order2' and 'names' with 'student_names'). Is that possible? I think that still throws a duplicate-related error though.



source https://stackoverflow.com/questions/71916586/how-to-merge-2-dataframes-on-multiple-columns-containing-duplicates

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...