Skip to main content

Adding Spotify Data from zenodo in a DataFrame

I want to add all the data from charts.zip from https://doi.org/10.5281/zenodo.4778562 in a single DataFrame. The data consist of a file per year that contains multiple CSVs. I made the following code:

header = 0
dfs = []
for file in glob.glob('Charts/*/201?/*.csv'):
    region = file.split('/')[1]
    dates = re.findall('\d{4}-\d{2}-\d{2}', file.split('/')[-1])
    weekly_chart = pd.read_csv(file, header=header, sep='\t')
    weekly_chart['week_start'] = datetime.strptime(dates[0], '%Y-%m-%d')
    weekly_chart['week_end'] = datetime.strptime(dates[1], '%Y-%m-%d')
    weekly_chart['region'] = region
    dfs.append(weekly_chart)
all_charts = pd.concat(dfs)

But, when I run it, python returns:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
/tmp/ipykernel_12886/3473678833.py in <module>
      9     weekly_chart['region'] = region
     10     dfs.append(weekly_chart)
---> 11 all_charts = pd.concat(dfs)

~/Downloads/enter/lib/python3.9/site-packages/pandas/util/_decorators.py in wrapper(*args, **kwargs)
    309                     stacklevel=stacklevel,
    310                 )
--> 311             return func(*args, **kwargs)
    312 
    313         return wrapper

~/Downloads/enter/lib/python3.9/site-packages/pandas/core/reshape/concat.py in concat(objs, axis, join, ignore_index, keys, levels, names, verify_integrity, sort, copy)
    344     ValueError: Indexes have overlapping values: ['a']
    345     """
--> 346     op = _Concatenator(
    347         objs,
    348         axis=axis,

~/Downloads/enter/lib/python3.9/site-packages/pandas/core/reshape/concat.py in __init__(self, objs, axis, join, keys, levels, names, ignore_index, verify_integrity, copy, sort)
    401 
    402         if len(objs) == 0:
--> 403             raise ValueError("No objects to concatenate")
    404 
    405         if keys is None:

ValueError: No objects to concatenate

How can I fix it?



source https://stackoverflow.com/questions/71973696/adding-spotify-data-from-zenodo-in-a-dataframe

Comments

Popular posts from this blog

ValueError: X has 10 features, but LinearRegression is expecting 1 features as input

So, I am trying to predict the model but its throwing error like it has 10 features but it expacts only 1. So I am confused can anyone help me with it? more importantly its not working for me when my friend runs it. It works perfectly fine dose anyone know the reason about it? cv = KFold(n_splits = 10) all_loss = [] for i in range(9): # 1st for loop over polynomial orders poly_order = i X_train = make_polynomial(x, poly_order) loss_at_order = [] # initiate a set to collect loss for CV for train_index, test_index in cv.split(X_train): print('TRAIN:', train_index, 'TEST:', test_index) X_train_cv, X_test_cv = X_train[train_index], X_test[test_index] t_train_cv, t_test_cv = t[train_index], t[test_index] reg.fit(X_train_cv, t_train_cv) loss_at_order.append(np.mean((t_test_cv - reg.predict(X_test_cv))**2)) # collect loss at fold all_loss.append(np.mean(loss_at_order)) # collect loss at order plt.plot(np.log(al...

Sorting large arrays of big numeric stings

I was solving bigSorting() problem from hackerrank: Consider an array of numeric strings where each string is a positive number with anywhere from to digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array. I know it works as follows: def bigSorting(unsorted): return sorted(unsorted, key=int) But I didnt guess this approach earlier. Initially I tried below: def bigSorting(unsorted): int_unsorted = [int(i) for i in unsorted] int_sorted = sorted(int_unsorted) return [str(i) for i in int_sorted] However, for some of the test cases, it was showing time limit exceeded. Why is it so? PS: I dont know exactly what those test cases were as hacker rank does not reveal all test cases. source https://stackoverflow.com/questions/73007397/sorting-large-arrays-of-big-numeric-stings

How to load Javascript with imported modules?

I am trying to import modules from tensorflowjs, and below is my code. test.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title </head> <body> <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script> <script type="module" src="./test.js"></script> </body> </html> test.js import * as tf from "./node_modules/@tensorflow/tfjs"; import {loadGraphModel} from "./node_modules/@tensorflow/tfjs-converter"; const MODEL_URL = './model.json'; const model = await loadGraphModel(MODEL_URL); const cat = document.getElementById('cat'); model.execute(tf.browser.fromPixels(cat)); Besides, I run the server using python -m http.server in my command prompt(Windows 10), and this is the error prompt in the console log of my browser: Failed to loa...